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Importance 20 

Nitrogen (N) is a common limitation on primary productivity, and its source remains 21 

unresolved in northern peatlands that are vulnerable to environmental change. Decomposition of 22 

complex organic matter into free amino acids has been proposed as an important N source, but 23 

the genetic potential of microorganisms mediating this process has not been examined. Such 24 

information can elucidate possible responses of northern peatlands to environmental change. We 25 

show high genetic potential for microbial production of free amino acids across a range of 26 

microbial guilds in northern peatlands. In particular, the abundance and diversity of bacterial 27 

genes encoding proteolytic activity suggests a predominant role for bacteria in regulating 28 

productivity and contrasts a paradigm of fungal dominance of organic N decomposition. Our 29 

results expand our current understanding of coupled carbon and nitrogen cycles in north 30 

peatlands and indicate that understudied bacterial and archaeal lineages may be central in this 31 

ecosystem’s response to environmental change.  32 
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Abstract 33 

Nitrogen (N) is a scarce nutrient commonly limiting primary productivity. Microbial 34 

decomposition of complex carbon (C) into small organic molecules (e.g., free amino acids) has 35 

been suggested to supplement biologically-fixed N in northern peatlands. We evaluated the 36 

microbial (fungal, bacterial, and archaeal) genetic potential for organic N depolymerization in 37 

peatlands at Marcell Experimental Forest (MEF) in northern Minnesota. We used guided gene 38 

assembly to examine the abundance and diversity of protease genes; and further compared to 39 

those of N-fixing (nifH) genes in shotgun metagenomic data collected across depths and in two 40 

distinct peatland environments (bogs and fens). Microbial proteases greatly outnumbered nifH 41 

genes with the most abundant genes (archaeal M1 and bacterial trypsin (S01)) each containing 42 

more sequences than all sequences attributed to nifH. Bacterial protease gene assemblies were 43 

diverse and abundant across depth profiles, indicating a role for bacteria in releasing free amino 44 

acids from peptides through depolymerization of older organic material and contrasting the 45 

paradigm of fungal dominance in depolymerization in forest soils. Although protease gene 46 

assemblies for fungi were much less abundant overall than for bacteria, fungi were prevalent in 47 

surface samples and therefore may be vital in degrading large soil polymers from fresh plant 48 

inputs during early stage of depolymerization. In total, we demonstrate that depolymerization 49 

enzymes from a diverse suite of microorganisms, including understudied bacterial and archaeal 50 

lineages, are prevalent within northern peatlands and likely to influence C and N cycling.   51 

  52 
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Introduction 53 

Understanding the processes that govern coupled carbon (C) and nutrient dynamics in 54 

northern peatlands is critical to predicting future biogeochemical cycles. These ecosystems 55 

account for 15-30% of global soil carbon storage (1-3), primarily occurring within layers of 56 

partially decomposed plant materials where nitrogen (N) content is low (4, 5). Nitrogen is a 57 

critical nutrient regulating primary productivity in many terrestrial ecosystems (6) and can 58 

dictate belowground carbon storage through impacts on soil organic matter decomposition (7, 8). 59 

Ombrotrophic peatlands are characterized by Sphagnum moss that has a comparatively large N 60 

requirement (approximately 40-50 kg ha-1 year-1 of N (9-12)).  Nitrogen fixation historically has 61 

been considered to be the primary N source in peatlands (13-19). Yet, previous work has shown 62 

that N fixation alone cannot meet peatland N requirements (5, 20) and many studies have 63 

demonstrated the importance of organic molecules in fulfilling N demand (21-26). Symbiotic 64 

fungi have been associated with organic N acquisition (23, 26), but there is an increasing 65 

appreciation for the role of bacteria in this process. Despite these advances, our understanding of 66 

the genetic mechanisms mediating N availability remains nascent. We address this knowledge 67 

gap by exploring the genetic potential of peatland microbiomes to decompose polymeric organic 68 

N and subsequently influence peatland C and N cycles. 69 

 Depolymerization of proteinaceous organic material is an important pathway for 70 

generating bioavailable N in wide range of systems including boreal forests and is often 71 

considered a fungal trait (5, 7, 21, 23, 27-29). Depolymerization decomposes polymeric organic 72 

material into monomers and amino acids that can be used as C and N sources by soil 73 

microorganisms and plants (20, 21, 23, 30, 31). Several studies from terrestrial ecosystems under 74 
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strong inorganic N-limitation have shown that organic N, and free amino acids in particular, can 75 

be used directly by plants (20, 21, 23, 30, 31). Additionally, microorganisms (defined here as 76 

bacteria, archaea, and fungi) secrete extracellular proteases into soils to carry out organic matter 77 

depolymerization. Proteases are highly diverse and ubiquitous in soil and provide a large 78 

proportion of bioavailable N (32, 33). These enzymes catalyze the initial hydrolysis of proteins 79 

into smaller organic molecules such as oligopeptides and amino acids that can be subsequently 80 

acquired by plants (32).  81 

In peatlands, fungi are considered more important than bacteria or archaea in proteolytic 82 

activity and decomposition more generally, particularly within the surface layer (34-36). 83 

Symbiotic ectomycorrhizal and ericoid fungi (EEM), which are supplied with C by a host plant, 84 

are especially relevant to organic N depolymerization in peatlands through N mining (37-39). 85 

EEM have been suggested to acquire N from soil organic matter (20, 40-42) and enable plants to 86 

directly compete with free-living microorganisms for N (43-45) to such an extent that Orwin et 87 

al. (46) posited a critical role for EEM in generating microbial N limitation of decomposition by 88 

enhancing plant N uptake. This fungal-mediated plant organic N uptake may be particularly 89 

important in N-poor boreal ecosystems (20, 21). In these systems, free-living microorganisms 90 

should retain amino acids for growth instead of mineralizing organic N (23, 47). However, 91 

empirical evidence supporting the notion that fungi dominate proteolytic activity is sparse and 92 

primarily derived from correlative studies.  93 

Little is known about the roles various other microorganisms may play in peatland 94 

organic N depolymerization, and the genes that encode microbial proteases may provide valuable 95 

insight into the coupling of C and N cycles in these systems. Recent work has suggested 96 
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substantial involvement of bacteria in protein depolymerization. For example, Lin et al. (35, 48) 97 

indicated that bacteria may outcompete fungal communities for plant-derived substrates, 98 

including large polymeric molecules. Consistent with this work, Bragina et al. (49) demonstrated 99 

that peatland Sphagnum moss microbiomes contain a high abundance of genes involved in N 100 

cycling and recalcitrant organic matter decomposition. The involvement of archaeal proteases in 101 

peatland organic N decomposition remains largely unexplored. 102 

Here, we evaluate microbial proteolytic potential relative to N-fixation within the Marcell 103 

Experimental Forest (MEF) by examining the genes encoding a suite of microbial proteases vs. 104 

the nifH gene that is well-ascribed to N-fixation. Because the peatlands are highly acidic (pH 3-105 

4) and organic polymers have bulky structures, we focused on microbial genes encoding 106 

extracellular proteases previously identified as active in acidic environments (50-52). This led to 107 

the identification of 19 extracellular protease gene families according to the MEROPS database 108 

(53). We also included one intracellular protease gene (aminopeptidase, M1 family) in the study 109 

due to the encoded protein’s role in producing single amino acids during depolymerization (50-110 

52). We evaluated the distributions of these proteases, as well as three housekeeping genes and 111 

the nifH gene, in six metagenomes across two peatland environments and three depths. Though 112 

our statistical power was limited, we know of no other work investigating the genetic potential of 113 

peatlands for organic N degradation across microbial domains, and our results contrast the 114 

existing paradigm of fungal dominance in proteolytic decomposition from upland ecosystems. 115 

We leverage work demonstrating differences in organic matter cycling between hydrologically-116 

defined environments within peatlands (e.g., bogs vs. fens) as basis for potential differences in 117 

proteolytic activity across environments (35, 54-56). Previous research has also shown declines 118 
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in fungal biomass depth as oxygen and root exudates become depleted in peatland, so examine 119 

differential vertical stratification patterns in proteases between microbial domains (34, 57, 58). 120 

Our objectives were to provide a foundation for characterizing the mechanisms driving N 121 

availability and C decomposition patterns in peatlands through investigating shifts in proteolytic 122 

potential across (i) fungal, bacterial, and archaeal domains, (ii) peatland environment types, and 123 

(iii) depth profiles. 124 

Results and discussion 125 

 Nitrogen fixation has long been considered the primary N source for peatlands (13-18), 126 

but N fixation alone cannot meet ecosystem N requirements (5, 20). Similarly, N assimilation 127 

has been shown to exceed gross mineralization in northern ecosystems (20, 21), and intact amino 128 

acid assimilation has been recognized as a potentially important source to meet N demand (23, 129 

31, 37, 59). Previous work suggested that microbial proteases may be a missing link in northern 130 

peatland C and N cycling (31, 60). We investigated the proteolytic potential of peatland 131 

microbiomes across depth and environment type. Our work contrasts the paradigm of fungal 132 

dominance in depolymerization processes and suggests that niche complementarity among 133 

diverse microorganisms is likely to play a substantial role in C and N cycling within northern 134 

peatlands. 135 

Out of 24 genes investigated, we successfully assembled sequences aligned to 13 genes 136 

(Table S1-S2). The assembled groups include three housekeeping genes (rplB, rpb2_4, and 137 

rpb2_7), nine protease genes (eight of which are extracellular), and the nifH gene. 138 

Approximately 34% of the fully covered contigs were annotated as housekeeping genes, 5% 139 

were annotated as nifH genes, and 61% were annotated as protease genes. Among all 140 
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metagenomic reads mapped to the annotated fully covered contigs, approximately 83.5% were 141 

bacterial, 16% were archaeal, and 0.5% were fungal (Table 1).  142 

We reveal unique niches for fungal, bacterial, and archaeal proteolytic potential, as 143 

housekeeping and protease genes from each kingdom showed distinct stratification patterns 144 

across depth. Within housekeeping genes, the standardized abundance of bacterial genes was 145 

similar across depth profiles, whereas the standardized fungal gene abundance decreased and 146 

archaeal genes increased along the sampling depth (Figure 1). Protease encoding genes differed 147 

among archaea, bacteria, and fungi (Figure 2). Among nine protease genes, eight were identified 148 

in bacteria, six were identified in fungi, and only three were identified in archaea. With some 149 

exceptions, archaeal protease genes increased with sampling depth, fungal protease genes 150 

decreased with depth, and bacterial protease genes varied throughout depth profiles. 151 

Fungi were mostly found in the acrotelm, which constitutes the peat surface and is more 152 

oxygenated than deeper peat layers (Figure 2). The acrotelm contains higher concentrations of C 153 

inputs from newly-derived plant material, such as lignin-, cellulose-, and protein-based polymers 154 

(61). Lignin in particular requires oxygen for decomposition due to its comparatively high 155 

chemical complexity such that some bonds cannot be readily cleaved by hydrolases or 156 

reductases, and other work has indicated an association between fungal proteases and lignin 157 

decomposition under N-limited conditions (62, 63). Previous work in this system has also shown 158 

that carbohydrates are enriched in the surface layer, while amino sugars and saccharides increase 159 

with depth (35). We therefore suggest that fungi are particularly relevant players in early stages 160 

of decomposition, in which fresh plant material is degraded into small oligopeptides, consistent 161 
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with other evidence showing fungi are unlikely to metabolize complex organic molecules found 162 

at depth in peatlands (58, 64). 163 

Bacteria were the most abundant sequences detected regardless of depth or environment, 164 

in line with previous work by Lin et al. (55), and large numbers of bacterial proteases relative to 165 

fungi and archaea signifies a possible dominance of bacterial depolymerization in northern 166 

peatlands. Bacterial house-keeping genes and protease genes were approximately equally 167 

abundant throughout depth, and their sheer abundance suggest that at the community scale 168 

bacteria may outcompete fungi and archaea in proteolytic decomposition. Additionally, bacterial 169 

diversity throughout the depth profile, despite relatively constant abundance, indicates plasticity 170 

in bacterial resource use across a variety of organic matter degradation states (Figure 2).  171 

Complementary to fungal and bacteria niche space, archaea had clear advantage in deep 172 

peat. Archaeal protease genes were more abundant in the mesotelm (25-50 cm) and catotelm 173 

(>50 cm) than the acrotelm (0-10 cm). Lin et al. (55) noted the presence of archaea more 174 

generally at depth in peat, reaching up to 60% of total small-subunit rRNA gene sequences 175 

below 75 cm. Archaea are found in a variety of anaerobic and extreme environments, and 176 

specifically, methanogenic archaea are tolerant of low-oxygen conditions that persist in deep 177 

peat. Indeed, many of the protease genes we observed in deep peat were associated with 178 

methanogenic lineages (Fig. S1). The presence of archaeal proteases at depth suggests that 179 

archaea may be vital to the decomposition of the oldest and most humified organic materials 180 

stored within peatlands. In total, the consistent differences in abundance and diversity of fungi, 181 

bacteria, and archaea across the three peat depths of the bog and fen suggests that niche 182 
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partitioning across redox profiles may substantially influence the mechanisms of microbial 183 

decomposition. 184 

With respect to differences in microbiomes across environments, we found few 185 

differences in standardized gene abundance between bog (n = 3) and fen (n = 2) acrotelm 186 

samples, except that fungal genes were more abundant in fen acrotelm compared to bog acrotelm 187 

samples (Figure 1). However, three proteases (M14, M4_C, and asp (family A1)) were at least 188 

12% more abundant in samples from the fen compared to bog acrotelm and assemblies 189 

resembling U56 were less abundant in the fen compared to bog (Figure 2). Remaining protease 190 

genes were less than 10% different across environments (Table 2). 191 

Regardless of environment type or depth, bacterial protease abundance and diversity as a 192 

whole indicates a wide variety of possible niches for C and N cycling bacteria within peatlands. 193 

Aminopeptidase N (M1), which cleaves peptides and produces N-terminal amino acid residues 194 

(65, 66), was the most prevalent microbial protease. Work in other systems has shown that 195 

bacterial aminopeptidase N proteases can account for 99% of alanine released from substrate 196 

hydrolysis (67) and that they are critical in generating bioavailable organic N via microbial 197 

biomass turnover (68). Thus, we highlight the M1 gene family as a key enzyme in understanding 198 

peatland N cycles. 199 

Beyond the protease M1 family, extracellular protease genes were highly diverse, and we 200 

propose that specific extracellular proteases we identified may fill unique steps in decomposition 201 

of plant material (Figure 3) (69-71). In particular, asp (A01) genes were uniquely detected in 202 

fungi, while M4_C and U56 genes were only found in bacteria (Figure 2). Each of these 203 

proteases contained a wide variety of genera with differences across both depth and environment 204 
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type, and the abundance of asp (A01) genes in the acrotelm appeared to be inversely related to 205 

bacterial M4_C and U56 genes (Figure 3). Previous work has shown that the fens at Marcell 206 

Experimental Forest have roughly 10% more dissolved organic C than bogs and that this 207 

difference in geochemistry explains most of the variation in microbiome composition between 208 

fen and bog samples (48). We note that fungal protease genes in particular are more abundant in 209 

the fen acrotelm than bog acrotelm (the layer in which most fungal biomass was found), 210 

supporting a role for fungal proteases in the decomposition of fresh carbon-rich plant material. 211 

Asp (A01) genes are commonly associated with fungal wood decomposition (62, 63). Asp (A01) 212 

proteases may therefore play an important role in the early stage of peatland depolymerization, in 213 

which large polymeric molecules are degraded. Asp (A01) genes consistent with the genera 214 

Phanerochaete, Pseudogymnoascus, and Aspergillus were detected in fen samples only (Figure 215 

3A), and their presence in the more C-rich fen environment may denote a distinct ecological 216 

niche for these organisms in proteolytic decomposition within fen-dominated peatlands. 217 

Bacterial M4_C genes were particularly abundant in one fen acrotelm sample (Fen1_-10) 218 

and were taxonomically diverse within acrotelm samples more generally (Figure 3B). M4_C 219 

genes are involved in the hydrolysis of proteins with large hydrophobic groups at P1’ (Table S2). 220 

Although bacterial and archaeal protease gene abundances were mostly similar across 221 

environments, protease genes classified as U56 12% were more abundant in the bog than the fen 222 

and similarly diverse to the M4_C gene, with Methylocella and Burkholderia as the most 223 

abundant genera (Table 2, Figure 3C). We therefore propose that U56 (formerly linocin M18 224 

(72)) may be an essential protease peatlands. U56 is thought to hydrolyze chymotrypsin and 225 

trypsin into its component amino acids (Table S2). Though we did not explore the niches of 226 
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these organisms beyond proteolytic activity, Methylocella are commonly associated with 227 

methantrophy (73) and Burkholderia are functionally diverse, but often considered to be plant-228 

associated nitrogen fixers (74, 75). The abundance of proteases associated with Methylocella and 229 

Burkholderia merits future investigation into their role in peatland biogeochemistry. 230 

While we support previous work showing a role for N fixation in peatlands, particularly 231 

in surface peat (35), we suggest that microbial depolymerization compliments N fixation in 232 

highly N-limited ecosystems. Our work is consistent with the recently proposed ‘LAH N-233 

acquisition strategy’ framework in which organic N decomposition supplements N fixation (76). 234 

The concept uses a cost-benefit framework to propose that proteolytic activity can be a preferred 235 

N-acquisition strategy for microorganisms due to the high enzymatic cost of N fixation. We were 236 

able to assemble >21,000 archaeal and bacterial nifH  genes, but nifH genes were less prevalent 237 

than the most abundant proteases in each microbial domain (archaeal M1 and bacterial trypsin 238 

(S1 family), Figure 2) in line with the observation that N accumulation in boreal ecosystems 239 

exceeded N deposition from atmosphere by 12-25 fold (10). Genes encoding for nifH were 240 

detected in both archaea and bacteria, and approximately 97% of the nifH genes detected were 241 

bacterial. Nitrogen fixation is not known to be mediated by fungal communities (77). Sphagnum 242 

is known to harbor a diversity of N-fixing symbionts (49), including Cyanobacteria observed 243 

here (78), and is likely vital to atmospheric N fixation in peatlands.  244 

Conclusion 245 

We explored the genetic potential for organic matter depolymerization in a northern 246 

peatland based on previous work indicating that microbial proteases may be critical in 247 

understanding in C and N availability within these ecosystems (31, 60). We found that fungal 248 
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protease genes were abundant in the acrotelm (surface layer), but bacterial proteolytic potential 249 

was orders of magnitude greater and distributed through depth profiles. Bacterial protease gene 250 

abundance was consistent across environments and fungal protease genes were more prevalent in 251 

the higher-C fen environment. In contrast to fungi and bacteria, prevalence of archaeal protease 252 

genes at depth suggests an importance of these organisms in C and N availability below the 253 

rooting zone in peatlands. We also show a diversity of protease genes that suggests strong niche 254 

complementarity among microorganisms with different physiologies. We identify proteases M1, 255 

U56, and asp (A01) as proteases that may be particularly important within northern peatlands. In 256 

total, proteases greatly outnumbered nifH genes attributed to N fixation, emphasizing their role 257 

in peatland C and N cycles. We contrast the paradigm of fungal dominance in depolymerization 258 

processes and suggest that bacteria are imperative in releasing free amino acids from peptides 259 

through depolymerization of older organic material. Our work demonstrates high genetic 260 

potential for depolymerization from a diverse suite of microorganisms beyond those typically 261 

considered, and we urge a broader perspective on the organisms mediating C and N cycles in 262 

northern peatlands. 263 

 264 

Materials and Methods 265 

Sample description 266 

A large-scale field manipulation experiment known as Spruce and Peatland Response 267 

Under Changing Environments (SPRUCE) was initiated at the Marcell Experimental Forest 268 

(MEF), Minnesota, USA, by the U.S. Department of Energy, the U.S. Department of Agriculture 269 

(USDA) Forest Service, and Oak Ridge National Laboratory (http://mnspruce.ornl.gov/). The 270 
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MEF itself is a 8.1-hectare acidic, forested bog (N47º30’31.132”, W93º27’15.146”). Sites within 271 

the MEF are classified based on their trophic status and water source as ombrotrophic bogs 272 

(receiving precipitation only) or minerotrophic fens [fed by both groundwater and precipitation 273 

(48, 79)]. Although fens are frequently considered more nutrient rich than bogs, both types of 274 

peatlands are highly limited in inorganic N. A full characterization of the field site including 275 

peatland hydrology and vegetation is described by Sebestyen et al. (80). Further information on 276 

samples is available in Lin et al. (35, 55).  277 

Six metagenomic libraries were obtained from MEF in February 2012 as per Lin et al. 278 

(35). Briefly, peat cores were collected from hollows in bogs and fens and sectioned from 0- to 279 

10- (acrotelm), 25- to 50- (mesotelm), and 75- to 100-cm (catotelm). While the water table was 280 

near the surface of the Sphagnum layer at the time of sampling, MEF experiences large seasonal 281 

variation in water table height, with the acrotelm and mesotelm layers frequently exposed to 282 

oxygen (81). For example, in the year of sampling water table depth fell to -20 cm below the 283 

Sphagnum layer (81) and microbiomes in the acrotelm contained many aerobic microorganisms 284 

(55). Each core section was homogenized. Two acrotelm samples (0 to -10 cm) were collected 285 

from bog lake fen (i.e. samples Fen1_-10 and Fen2_-10), two acrotelm samples (0 to -10 cm) 286 

from SPRUCE bog (i.e. samples T3M_-10 and T3F_-10), one mesotelm sample (-25 to -50 cm) 287 

from SPRUCE bog (i.e. sample T3F_-50), and one catotelm sample (-75 to -100 cm) from 288 

SPRUCE bog (i.e. sample T3F_-100). Sample collection is extremely limited at MEF to preserve 289 

the integrity of the SPRUCE experiment. As such, our sample numbers are not conducive to 290 

statistical analysis, but the metabolic insight generated by our in-depth metagenomic analysis 291 
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merits deeper investigation into the respective roles of microbial domains in coupled C-N cycles 292 

in northern peatlands.  293 

As described in Lin et al. (35, 55), samples differed in physicochemical properties across 294 

the depth layers. Sequencing coverage for each metagenome increased with depth and ranged 295 

from 42% to 86% (Table 1). Metagenomes were generally consistent between samples from the 296 

same depth and site, suggesting that the results reported here are likely to be robust (further 297 

details provided in Lin et al. (35)). DNA-based approaches reflect microbial potential to catalyze 298 

a given process rather than gross activity rates, however, metagenomic sequences as often used 299 

as a proxy for identifying biogeochemical mechanisms of interest. The phylogenetic distribution 300 

of microorganisms in each sample is presented at the community level in Lin et al. (55) and at 301 

the protease level in Figure S2. Microorganisms belonging to Acidobacteria, Proteobacteria, 302 

Actinobacteria, and Verrucomicrobia were common at both sites, with methanogenic archaea 303 

present at depth. Whole genome shotgun metagenome sequences are available in MG-RAST (35, 304 

55).  305 

 306 

Hidden Markov Model construction 307 

We used 24 Hidden Markov Models (HMMs) constructed based on protein sequences 308 

(82) to investigate the microbial genetic potential in N acquisition in MEF peatlands, 20 of which 309 

were for microbial protease genes, one for nitrogenase gene (nifH), and three for microbial single 310 

copy housekeeping genes (Table S2). Nitrogenase enzymes are encoded by three genes [nifH, 311 

nifD, and nifK (reviewed in 83)]; however nifH is the most commonly used marker gene for 312 

nitrogenase potential (77, 84). Evidence suggests that nifD- and nifK-based assays are consistent 313 
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with nifH-based results (85). We use ‘N-acquisition genes’ and related terms to represent all 314 

protease genes and nifH. The abundance of N-acquisition genes is therefore the sum of the 315 

abundance of all protease genes plus the abundance of nifH. The housekeeping genes used as 316 

bacterial, fungal, and archaeal markers are genes encoding for ribosomal protein L2 (rplB), RNA 317 

polymerase second largest subunit domain 4 (RPB2_4), and domain 7 (RPB2_7), respectively. 318 

We use the term ‘housekeeping genes’ to represent these domain-specific single copy 319 

housekeeping genes. The abundance of housekeeping genes is calculated as the sum of the 320 

abundance all housekeeping genes. The HMM’s for nifH and rplB genes are available in 321 

Ribosomal Database Project (RDP) Fungene repository (86). Models for RPB2_4 and RPB2_7 322 

were obtained from Pfam database (http://pfam.sanger.ac.uk/). The protease genes (one 323 

intracellular and 19 extracellular) were selected based on literature characterizations (50-52). 324 

Though there are hundreds of protease genes in the MEROPS database (53), most are 325 

intracellular enzymes not thought to be involved in decomposition or unsuitable for the acidic 326 

environments. We therefore targeted protease genes both known to encode functions relevant to 327 

peatland decomposition and known to be expressed and active in previous lab assays (50-52). To 328 

construct the most informative HMM models for targeted genes, well-studied gene sequences 329 

were first selected from existing literature. These seed sequences were cross-checked against the 330 

reviewed protein database SwissProt (http://www.uniprot.org/). Genes encoding for proteases 331 

were also searched against the MEROPS peptidase database (http://merops.sanger.ac.uk/) to 332 

confirm their protease identity. Protein families and existing protein HMM models were queried 333 

from Pfam database. The retrieved Pfam HMMs were then used to extrapolate archaeal, 334 

bacterial, and fungal reference protein sequences from UniProt database. Pfam HMMs were used 335 
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to search against SwissProt at different cutoffs (E value or Bit score) to ensure model accuracy. 336 

If existing Pfam HMMs could not accurately query sequences, a set of well-annotated sequences 337 

would be used to construct new models (Table S2). Reference protein sequences were retrieved 338 

from UniPort and aligned using finalized HMMs. 339 

 340 

Guided metagenomic assembly 341 

All metagenomic reads were filtered by using RDP SeqFilters (87) to a minimal average 342 

read quality of Q = 25. Genes with HMM models (Table S2) were assembled from combined 343 

filtered reads by using modified RDP Xander skeleton analysis pipeline 344 

(https://github.com/fishjord/xander_analysis_skel). Briefly, a De Brujin graph is built for the 345 

combined shotgun metagenome dataset. Potential gene start points (Kmer starts, k = 30 346 

nucleotides) were identified from each gene reference sequences. Local assembling was carried 347 

out by searching constructed De Bruijin graphs at the given gene start points. These local 348 

assemblages were then merged to form the longest contigs possible. The final merged nucleotide 349 

sequences were dereplicated using CD-Hit 4.6.1 (-c 1.0) (88) to identify the longest unique 350 

contigs.  351 

Data processing 352 

All quality filtered reads were mapped (Bowtie2.2.5)(89) against the dereplicated merged 353 

contigs. Only contigs that were 100% covered (median base coverage = 1) were considered. The 354 

biological information of these fully covered contigs were identified using Basic Alignment 355 

Searching Tool (blastx) 2.2.30+; the best matching sequences with E-values ≤ 1×10-5 were kept 356 

(90). UniProt (UniProtKB release 10, 2014) was used as the annotation database.  357 
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 Final gene abundance per peat sample was determined by mapping reads from each 358 

metagenome to fully covered contigs. The mapping results indicated ~9% of reads were mapped 359 

onto the contigs once only and majority of the fungal housekeeping contigs were mapped once. 360 

Hence, for downstream analyses, we included all reads mapped to final fully covered contigs at 361 

least once (Table S3). The mapped read abundances were standardized by sequencing depth for 362 

comparisons among samples. Gene abundance was be used to infer the abundance of mapped 363 

reads to fully covered contigs. Final data analyses and visualization was done in R 3.1.0 (91) 364 

with packages plyr (92) and ggplot2 (93). 365 
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Figures and Tables. 610 

 611 

 612 

Figure 1. The standardized abundance of identified microbial genes in MEF peatlands through 613 

sampling depth. (A-C) show the distribution of house-keeping genes. (D-F) show the distribution 614 

of N acquisition genes. For location-depth combinations with two samples (Fen -10 and Bog -615 

10), the bar height represents the average standardized gene abundance of two samples and the 616 

hatched lines represent the maximum and minimum values.  617 

 618 
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 619 

 620 

 621 

 622 

Figure 2. The abundance of identified nitrogen acquisition gene assemblies and their taxonomic 623 

distribution. Microbial proteases greatly outnumbered nifH genes (last column) with the most 624 

abundant genes (bacterial trypsin (S01) (column 1) and archaeal M1 (column 4) each containing 625 

more sequences than all sequences attributed to nifH. Additionally, the relative abundance of 626 

most bacterial protease genes did not differ across depth profiles. Samples from the same depth 627 

and environment are colored identically, as denoted in the legend. The sampling depth increases 628 

from left to right. A description of samples is located in Table 1.  629 

  630 
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 631 

Figure 3. Phylogenetic distribution of the most abundant (A) fungal asp (A01), (B) bacterial 632 

M4_C, and (C) bacterial U56 genes with variation across environments. Genus-level data are 633 

presented.  634 

 635 

 636 

 637 

 638 

639 
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Table 1. The distribution of mapped reads mapped to contigs identified as housekeeping genes, N fixation genes, and protease genes. 640 

The distribution of housekeeping genes among archaea, bacteria, and fungi is also provided. 641 

 642 

 

Samples Peatland Depth House-keeping genes N Fixing genes Protease genes Archaea Bacteria Fungi 

Fen1_-10 Fen -10 3,822 559 10,296 1,851 12,754 72 

Fen2_-10 Fen -10 2,506 469 5,757 894 7,701 137 

T3M_-10 Bog -10 2,680 339 7,704 1,418 9,201 104 

T3F_-10 Bog -10 2,785 736 6,194 663 9,003 49 

T3F_-50 Bog -50 8,003 1,061 22,256 4,733 26,538 49 

T3F_-100 Bog -100 4,174 266 11,420 4,933 10,888 39 

 643 

 644 

  645 
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Table 2. The standardized abundance of N acquisition genes in acrotelm peat samples. The values represent the average of two 646 

replicates of acrotelm samples from each geological location. The lighter color indicates a higher value. The percent difference = 100 647 

*(H/L-1), where H is high value and L is low value.  648 

Gene Categories pfam 

Average of two acrotelm 

replicates 

Percent difference Bog Fen 

Protease 

trypsin (S01) 2041.33 1998.47 2% 

S10 624.41 643.052 3% 

S8 516.76 497.76 4% 

M28 55.79 59.42 6% 

M1 2614.43 2823.43 8% 

U56 701.53 619.60 13% 

M14 222.28 251.74 13% 

M4_C 7.31 9.49 30% 

asp (A01) 6.77 16.04 137% 

Nitrogen Fixation nifH 530.53 453.15 17% 

 649 
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