
U.S. Department of Energy

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under 
Contract No.                              with the U.S. Department of Energy. The publisher by accepting the 
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, 
irrevocable,  world-wide license to publish or reproduce the published form of this manuscript, or allow others
 to do so, for United States Government purposes. 

Brookhaven National Laboratory 

BNL-211825-2019-JAAM

Leaf reflectance spectroscopy captures variation in carboxylation capacity
across species, canopy environment, and leaf age in lowland moist tropical

forests

J. Wu, A. Rogers

To be published in "New Phytologist"

June 2019

Environmental and Climate Sciences Department

USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)

DE-SC0012704



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



 

Title: Leaf reflectance spectroscopy captures variation in carboxylation capacity across 

species, canopy environment, and leaf age in lowland moist tropical forests 

Authors 

 Jin Wu
1*#

, Alistair Rogers
1
, Loren P. Albert

2,3
, Kim Ely

1
, Neill Prohaska

3
, Brett T. Wolfe

4
, 

Raimundo Cosme Oliveira Jr5
, Scott R. Saleska

3
, and Shawn P. Serbin

1

Affiliations 

[1] Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton,

New York, NY, 11973

[2] Institute at Brown for Environment and Society, Brown University, Providence, RI,

02912

[3] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ,

85721

[4] Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama

[5] Embrapa Amazônia Oriental, Santarém PA 680200, Brazil

* Corresponding author

# Present address: School of Biological Sciences, University of Hong Kong, Pokfulam, Hong

Kong. Phone: (852) 22990655; Email: jinwu@hku.hk

Key words: vegetation spectroscopy, gas exchange, plant functional traits, seasonality, Earth 

system models   

Author Orchid Identifier 

Jin Wu 0000-0001-8991-3970 

Alistair Rogers 0000-0001-9262-7430 

Loren P. Albert 0000-0002-9674-6071 

Kim Ely 0000-0002-3915-001X 

Neill Prohaska no orchid Identifier 

Brett T. Wolfe 0000-0001-7535-045X 

Raimundo Cosme Oliveira Jr 0000-0002-2735-1746 

Scott R. Saleska no orchid Identifier 

Shawn P. Serbin 0000-0003-4136-8971 



Summary 

 Understanding the pronounced seasonal and spatial variation in leaf carboxylation

capacity (Vc,max) is critical for determining terrestrial carbon cycling in tropical

forests. However, an efficient and scalable approach for predicting Vc,max is still

lacking.

 Here we tested the ability of leaf spectroscopy for rapid estimation of Vc,max. We

estimated Vc,max using traditional gas exchange methods, and measured reflectance

spectra and leaf age in leaves sampled from tropical forests in Panama and Brazil. We

used these data to build a model to predict Vc,max from leaf spectra.

 Our results demonstrated that leaf spectroscopy accurately predicts Vc,max of mature

leaves in Panamanian tropical forests (R
2
=0.90). However, this single-age model

required recalibration when applied to broader leaf demographic classes (i.e.

immature leaves). Combined use of spectroscopy models for Vc,max and leaf age

enabled construction of the Vc,max-age relationship solely from leaf spectra, which

agreed with field observations. This suggests that the spectroscopy technique can

capture the seasonal variability in Vc,max, assuming sufficient sampling across diverse

species, leaf ages and canopy environments.

 This finding will aid development of remote sensing approaches that can be used to

characterize Vc,max in moist tropical forests and enable an efficient means to

parameterize and evaluate terrestrial biosphere models.

Introduction 

Projecting the fate of terrestrial ecosystems under a changing climate requires 

knowledge of plant physiology and ecology, and representation of that process knowledge in 

Earth system models (ESMs). In particular, photosynthesis is a critical process to represent 

accurately. In the most widely used model of photosynthesis, the rate of CO2 assimilation is 

determined by the maximum carboxylation rate of the enzyme Rubisco (Vc,max), the rate of 

RuBP regeneration through electron transport, and in some models, the utilization of triose 

phosphates (Farquhar et al., 1980; Sharkey et al., 2007). The Vc,max25, which is Vc,max 

standardized to a reference temperature of 25°C (Bernacchi et al., 2013), is a key parameter 

at the heart of many ESMs, and variation in this parameter has repeatedly been shown to be 

the source of a large fraction of overall model uncertainty (e.g. Bonan et al., 2011; Rogers, 

 



2014; Rogers et al., 2017a; Walker et al., 2017; Ricuitto et al., 2018). Accurate and 

comprehensive observations of the biogeography, ecology and overall distribution of Vc,max25 

is thus a critical research need for improving understanding and model predictions of 

photosynthesis at local, regional and global scales. 

Most ESMs currently represent Vc,max25 with a single static value for each plant 

functional type (Bonan et al., 2011; Rogers, 2014). This assumption is most questionable for 

the tropical forest biome where forests hold enormous plant functional diversity (Condit et 

al., 2005; Steege et al., 2013; Asner et al., 2014) that includes diversity in photosynthetic 

capacity (Norby et al., 2017; Walker et al., 2017). Furthermore, for a given species, Vc,max25 

has been shown to vary greatly with leaf development, growth temperature, and water and 

nutrient availability (Medlyn et al., 1999; Wilson et al., 2001; Kenzo et al., 2006; Kattge & 

Knorr, 2007; Ali et al., 2015; Norby et al., 2017; Albert et al., 2018; Kumarathunge et al., 

2019; Smith et al., 2019). Recently it was shown that the seasonality of photosynthesis in 

azonian evergreen forests, a ~4 Gt yr
-1

 fluctuation in CO2 assimilation (estimated using 

the envelop calculation approach to extend existing site-level study in Amazon to the entire 

Amazon basin), is driven by the replacement of old leaves that have a low Vc,max25 with 

recently matured leaves that have a higher Vc,max25
 
 (Wu et al., 2016; Albert et al., 2018). 

These studies also demonstrated that it is critical to quantify leaf age and couple this 

information with estimates of Vc,max25 to more accurately model leaf CO2 assimilation by 

tropical forests. This result is likely also applicable to other vegetative biomes that contain 

plants with long-lived leaves (e.g. needle-leaf evergreen) or with significant seasonal 

variation (Wilson et al., 2001; Han et al., 2008; Muraoka et al., 2010; Niinemets, 2016). 

However, scaleable Vc,max25 data to enable this approach in models is lacking and tedious to 

collect in the tropics, which is reflected in the very poor geographical coverage of tropical 

plants in plant trait databases
 
(Kattge et al., 2011; Schimel et al., 2015; Diaz et al., 2016).   

Typically, leaf-level Vc,max25 is estimated by fitting a model to a photosynthetic CO2 

response curve measured using gas exchange in a process that can take over forty-five 

minutes for a single measurement
 
(Long & Bernacchi, 2003). Although faster methods of 

estimating Vc,max have recently been described
 
(DeKauwe et al., 2016; Stinziano et al., 2017), 

gas exchange measurements remain challenging in natural systems such as tropical forests 

where many species must be characterized at large scales. Canopy access presents an 

additional challenge in some systems, including tropical forests where canopy height can 

  



exceed thirty meters, requiring canopy cranes
 
or tree climbing, which may be prohibitively 

time-consuming or expensive. Moreover, reliably tracking leaf age, i.e. using the leaf tagging 

method with intensive in-situ revisits and surveys
 
(Reich et al., 2004; Wu et al., 2017), 

coupled with leaf gas exchange measurements, adds another level of difficulty. This 

challenge is particularly acute for moist tropical forests in which periods of new leaf 

production can last from a week up to a year, and different tree species have distinct and 

often irregular new leaf production patterns both in their timing and amplitude
 
(Reich et al., 

2004; Lopes et al., 2016; Xu et al., 2017). Within this context, researchers require methods 

that allow rapid estimation of Vc,max25 and leaf age that can be applied to tall trees in natural 

systems, including remote tropical forests.  

Recent advances in vegetation spectroscopy offer a promising solution given that this 

approach tightly connects leaf optical properties with their chemical composition, cell 

structure and physiological properties (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009). As 

such, spectroscopy has been receiving increasing attention from a broader science 

community, including those from plant ecophysiology, functional trait ecology, and evolution 

(Serbin et al., 2012; Asner et al., 2016; Schneider et al., 2017; Schweiger et al., 2018). For 

example, recent studies suggest that leaf Vc,max can be estimated accurately and rapidly based 

on leaf reflectance spectra
 
(e.g. Doughty et al., 2011; Serbin et al., 2012; Ainsworth et al., 

2014; Barnes et al., 2017; Dechant et al., 2017; Yendrek et al., 2017; Silva-Perez et al., 

2018). In addition, two recent studies have
 
also shown that leaf spectroscopy provides an 

accurate, rapid means to assess leaf age at both individual and community scales (Chavana-

Bryant et al., 2017; Wu et al., 2017). Furthermore, some studies also suggest that it is 

possible that spectroscopy-based models of leaf Vc,max25 and age could be extended to the 

canopy scale by leveraging imaging spectroscopy instrumentation on tower, unmanned aerial 

systems, and manned airborne platforms (Serbin et al., 2015; De Moura et al., 2017). These 

developments highlight the potential to map changes in Vc,max25 and leaf age over 

unprecedented spatial and temporal scales. However, the ability of spectra to predict the 

variability in Vc,max25 across these multiple axes of variation (i.e. species, canopy position, leaf 

age, and forest sites) has not been tested, and a spectroscopy-based approach that can account 

for variation in both leaf age and Vc,max25 has not been developed. 

  



In this study we collected leaf gas exchange, reflectance spectroscopy and leaf age 

data from three lowland moist tropical forests. Our goal was to develop a single spectroscopic 

approach capable of capturing the variation in Vc,max25 among leaves of different ages from a 

range of species and canopy environments (i.e. variation in canopy height and sunlit and 

shaded environments) in lowland moist tropical forests. We asked two main questions: (1) 

Can the spectra-Vc,max25 relationship for mature leaves also be applied to leaves of other leaf 

demographic classes (e.g. immature leaves), and if not, can a new spectra-based model of 

V max25 be developed that performs well across all leaf ages? (2) Can leaf spectra information 

alone enable accurate estimation of the developmental trajectories of Vc,max25, i.e. the Vc,max25–

leaf age relationship? By answering these questions, we hope to understand if the 

spectroscopy approach can be used to capture the Vc,max25 variability in moist tropical forests, 

thereby accelerating current capacity to parameterize ESMs for improved projection of 

terrestrial carbon and water fluxes in the context of a changing climate.  

Materials and Methods 

Site descriptions 

This study used data collected from three lowland seasonal moist tropical forests, 

including two crane sites in the Republic of Panama and one site in Brazil. The two sites in 

Panama include a seasonally dry forest in the Parque Natural Metropolitano (PNM; 8.9950° 

N, 79.5431° W) near Panama City and a wet evergreen forest in the San Lorenzo Protected 

Area (SLZ; 9.2810° N, 79.9745° W), Colon Province. Both sites are dominated by clay soil 

(Turner & Romero, 2009). Mean annual air temperature at both sites is 26 °C (1998–2015), 

d mean annual precipitation is 1826 mm yr
-1

 and 3286 mm yr
-1

 for PNM and SLZ, 

respectively, with a 4-month-long dry season (precipitation < 100 mm per month) from 

January to April each year. At each site, the Smithsonian Tropical Research Institute 

maintains a canopy-access crane that enables access throughout the canopy of these forests. 

The site in Brazil (2.8500° S, 54.9667° W) is located around the K67 eddy covariance site in 

Tapajos National Forest, near Santarem, Para, Brazil. Part of the Brazilian Large Scale 

Biosphere-Atmosphere Experiment in Amazonia (LBA; Davidson et al., 2012), this site sits 

on a well-drained clay-soil plateau. Multiple-year (2002–2005) mean annual air temperature 

26 °C (Hutyra et al., 2007). Mean annual precipitation (1998–2013) is 2022 mm yr
-1

 with a

5-month-long dry season from mid-July to mid-December each year. Single rope access 

techniques were used to climb into and access individual crowns of canopy trees
 
(Albert et 

al., 2018). For details about forest composition and structure of the sites in Panama see 

  



Wright et al (2003), and of the site in Brazil see Rice et al (2004). For information about soil 

fertility of the sites in Panama see Turner & Romero (2009), and of the site in Brazil see 

Nepstad et al (2002).  

Plant materials 

Sixteen canopy tree species from the two sites in Panama (n=8 for SLZ and n=8 for 

PNM) and five canopy tree species from the Brazilian site were selected for intensive field 

measurements of leaf gas exchange, reflectance spectra and traits (i.e. leaf mass per area, 

LMA; Table S1). Sampled leaves were classified into two main age classes: immature leaves 

(<2 months; corresponding to the leaves from emergence up to fully-expanded, but not fully 

green, thickened, or physiologically matured) or mature leaves (≥2 months old), following 

the similar age categories as presented in Coley (1983), Wu et al (2016), and Albert et al 

(2018). This classification of leaf age is very similar to the three-age-category (young, mature 

and old) used in Wu et al (2016), except that we grouped mature and old age classes together 

into a single age class, mature. The reason of doing this is because we didn’t track leaf age as 

frequently in Panama as that in Brazil (Wu et al., 2017), and therefore lacked the resolution 

to differentiate three age classes. Field measurements in Panama were conducted in the 2016 

and 2017 dry seasons on sunlit upper canopy foliage. In the 2016 field campaigns in mid-

February and mid-April we sampled the dominant leaf class(es) from eight trees at each site. 

In February 2017 the measurements included both age classes if present within the top meter 

of a sunlit branch from four canopy tree species at the SLZ site (Table S1). Field 

measurements of canopy trees in Brazil, including leaves of both age classes from sunlit and 

shaded branches, were conducted during the 2012 dry season field campaign from mid-

August until early-December and a 2013 dry season campaign in August, using single-rope 

access techniques. For more details on surveyed tree species, please refer to our Table S1 & 

Albert et al (2018).        

 



Field measurements 

(1) Leaf gas exchange. We used six portable gas exchange systems in Panama and 

two in Brazil (LI-6400XT, Li-COR Inc., Lincoln, NE, USA). Measurements of the response 

of net assimilation rate (A) to intra-cellular CO2 concentration (Ci), commonly known as A-Ci 

response curves, were conducted on leaves from cut branches. In Panama, all branches were 

sampled before dawn using the canopy cranes. We took steps to avoid inducing xylem 

embolism when collecting branches, and when it was possible, the initial cut was made under 

water by bending the branch section into a bucket filled with water. Otherwise, the initial cut 

was made in the air and then a second cut was made underwater approximately 1 meter from 

the initial cut. In all cases, several cuts were made sequentially closer to the branch tip to 

relax xylem tension, following the protocol
 
as described by Sperry (2013). Samples were 

stored in individual buckets and kept in deep shade until used for measurements, which was 

normally within four hours after harvesting. Measurements of A-Ci curves closely followed 

Rogers et al (2017b), with the reference CO2 concentration controlled as follows: 400, 325, 

0, 175, 100, 65, 40, 400, 400, 400, 475, 575, 675, 800, 1000, 1400 and 1800 μmol mol
-1

, 

while holding leaves at 31±2 °C and 83±5% relative humidity under saturated light condition 

. 2000 μmol m
-2

 s
-1

). In Brazil, branch samples were collected via tree climbing, and 

gently lowered to the ground with ropes in the morning, and re-cut under water within 15 

minutes. Samples were stored in individual buckets and kept in deep shade until used for 

measurements (typically within four hours after harvesting). Full details of leaf gas exchange 

measurements from Brazil are in Albert et al (2018). In brief, the protocol was similar as that 

was described above except that in Brazil, the reference CO2 concentration was controlled as 

lows: 400, 100, 50, 100, 150, 250, 350, 550, 750 μmol mol
-1

, and then increased by 

increments of between 200 to 500 to reach saturation at around 2000, and leaf temperature 

was controlled at 31±2 °C and chamber humidity was controlled at 46±11%.  

Prior to curve fitting, quality control procedures for gas exchange measurements from 

all sites excluded values associated with instrument error and other known artifacts, such as 

spurious logs and data where leaks were clearly apparent, as described in Rogers et al 

(2017b) and Albert et al (2018). Finally, apparent maximum carboxylation capacity 

standardized to a reference temperature of 25°C (Vc,max25) was estimated using the kinetic 

constants and temperature response functions presented by Bernacchi et al (2013) as 

described by Rogers et al (2017b). A total of 186 leaves with estimated Vc,max25 in Panama 

 



and 81 leaves in Brazil were used in this study, with species-specific mean and standard 

deviation summarized in Table S1. 

(2) Leaf spectra. Following leaf gas exchange measurements, we kept the branches in

water and within two hours harvested the leaf and immediately measured leaf reflectance 

spectra and fresh mass. Leaf reflectance at the Panamanian sites was measured using a 

Spectra Vista Corporation (SVC) HR-1024i (SVC, Poughkeepsie, NY, USA; spectral range: 

350–2500nm; spectral resolution: 3.5 nm at 700nm, 9.5 nm at 1500 nm, and 6.5 nm at 2100 

nm) together with the SVC LC-RP-Pro foreoptic. Similarly, leaf reflectance of Brazilian 

plants was measured using a FieldSpec® Pro spectrometer (Analytical Spectra Devices, 

ASD, Boulder, CO, USA; spectral range: 350–2500nm; spectral resolution: 3 nm at 700nm, 

10 nm at 1400 nm, and 10 nm at 2100 nm) together with a ASD leaf clip attached to a plant 

probe assembly. In both cases, the reflectance probes contained internal, calibrated light 

sources to illuminate the samples during spectral collection. The leaf probe was used together 

with a black background for leaf reflectance measurements. To avoid the excessive heat loads 

while ensuring the reliable spectral collection we set the ASD integration time to 100 

milliseconds per scan and each collected spectra was an average of 10 scans, while with the 

SVC we used a 1 second collection time and used the spectrometer’s automatic integration 

optimization. This approach matches that of Serbin et al (2012), which originally highlighted 

the concerns of the excessive heat loads on the data quality of leaf spectra collected. For each 

leaf, reflectance spectra were measured on 1–6 different parts of the leaf adaxial surface 

depending on leaf size, and then averaged to determine the mean optical properties across all 

wavelengths.  

(3) Leaf traits. Leaf mass per area (LMA; g m
-2

) was also measured to assess the

diversity of plant species that we sampled in terms of the LMA trait space. In Panama, we 

sampled a known leaf area using cork borers. The samples were dried to constant mass at 

70°C. We then determined dry mass with a precision balance (Fisher Science Education, 

Model SLF303, Hanover Park, IL, USA) to calculate LMA. In Brazil, LMA was derived 

from area (using a Canon LiDE 120 scanner) and dry weight (also using a precision balance 

from Fisher Science Education, Model SLF303, Hanover Park, IL, USA) oven-dried at 60°C 

 over 72 hours.  

 



(4) Leaf age. In Brazil, in field campaigns conducted in August–September 2013, 

November 2013, March 2014 and July–August 2014, we selected seven trees of different 

species (see Table 1 in Wu et al., 2017) for precise in-situ leaf age monitoring. Leaf age 

monitoring was carried out by using metal tags and in-situ photo documentation (e.g. Fig. S1 

in Wu et al., 2017). Monitoring began in August–September 2013, when most sampled trees 

were flushing new leaves, and was continued periodically throughout the annual cycle. 

Through this age-tagging technique, we accurately tracked leaf age from leaf emergence at 

budburst (0 day) up to ~400 days old. From those leaves with accurate leaf age monitoring, 

we then sampled a total of 759 leaves covering the entire annual cycle, and measured leaf 

reflectance spectra using the same ASD FieldSpec® Pro spectrometer as described above. 

These leaves were then used for the development of the community-level spectra-age model 

(Wu et al., 2017) and briefly summarized below. Among these seven trees surveyed for both 

leaf age monitoring and leaf reflectance measurements, four were the same canopy trees 

(including leaf samples from both sunlit and shaded microenvironments) from which we 

made gas exchange measurements as described above (also see Table S1).  

In addition to the above-mentioned accurate leaf age monitoring, we also took RGB 

photos for all leaves used for leaf reflectance measurements in both Panama and Brazil. 

These RGB photos together with other related information, e.g. visual assessment of color, 

size and rigidity of the leaves, and relative positions and bud scars (when present) within a 1-

meter branch length, were then used to classify these leaves into two different age categories: 

immature and mature leaves.  

(5) Spectra-Vc,max25 analysis. For all field-based spectral and gas exchange 

measurements in Panama and Brazil, only the plant species with both leaf reflectance spectra 

and Vc,max25 were selected (which excluded 25 measurements in Panama and 12 

measurements in Brazil with only leaf gas exchange). Finally, we performed a filtering of 

outliers of combined spectra-Vc,max25 datasets (which removed ~5% of data). The outlier 

detection method implemented here was originally used in Wu et al (2017), which adapted an 

outlier detection module from “libPLS” (accessed at http://www.libpls.net/), using the 

Monte-Carlo sampling method (Xu & Liang, 2001) for automatic outlier detection. After the 

data filtering, the Panamanian dataset had n=151 measurements, including 110 mature leaves 

from all 16 species and 41 immature leaves from 9 of the 16 species, which accounts for 94% 

of all measurements with both spectral and leaf gas exchange in Panama. Brazilian dataset 

  



had n=65 measurements, including 44 mature leaves and 21 immature leaves from all 5 

species, which accounts for 94% of all measurements with both spectral and leaf gas 

exchange in Brazil.     

All the data sources associated with this study including gas exchange data, leaf 

spectral data, leaf trait, and leaf age information were summarized in Table S2.  

Partial least-squares regression (PLSR) modeling of spectra-Vc,max25 and spectra-age 

To relate the variability in Vc,max25 across tree species, leaf age, canopy position, and 

forest sites with the variability in leaf reflectance spectra and to infer leaf age from leaf 

reflectance spectra, we utilized a PLSR modeling approach
 
(Geladi & Kowalski, 1986; 

Wolter et al., 2008) using the “plsregress” function in Matlab (Mathworks, Natick, MA, 

USA) as described in De Jong (1993) and Rosipal & Kramer (2006). PLSR is a commonly-

used approach in spectroscopy and chemometric analyses given its ability to handle high 

predictor collinearity and a large number of predictor variables that may exceed the number 

of observations. PLSR accounts for these challenges by reducing the number of predictor 

variables down to relatively few, orthogonal latent variables, each composed of a weighted 

sum of the original variables
 
(Geladi & Kowalski, 1986; Wolter et al., 2008). Moreover, 

PLSR accounts for measurement error in the predictor variables (i.e. leaf hyperspectral 

reflectance).  

Our PLSR model development has been described previously
 
(Wu et al., 2017) and is 

briefly summarized here. We first applied a square root transformation to the Vc,max25 data and 

leaf age data to reduce the right skewness distribution of the original data (e.g. Figs. S1a,b 

and S2a,b) and satisfy the normal distribution assumption of PLSR analysis. We then 

performed a one-time, random, stratified separation of the full dataset into calibration (two 

thirds) and independent validation (one third) subsets; stratification insured that each subset 

included leaf samples of each age category, of each species, and (when appropriate) of each 

canopy position. Next, we randomly selected 70% of the calibration data subset, and fit the 

PLSR model of spectra-Vc,max25, with this random selection, repeating this 100 times and for 

each permutation applying the model to predict the corresponding independent 30% of the 

calibration data. To avoid the potential to over-fit the spectra-based calibration model, we 

optimized the number of PLSR latent variables by choosing the number of latent variables 

 



that minimized the root mean square error (RMSE) from predicting the remaining 30% of the 

calibration data over the 100 permutations (Chen et al., 2004; e.g. Fig. S1c). Meanwhile, we 

also determined the mean and standard deviation of the distribution of PLSR coefficients 

generated by the 100 PLSR fits corresponding to the optimal number of latent variables, 

which were used in the final spectra-Vc,max25 model (e.g. Fig. S1d).  

Finally, we quantified the performance of this spectra-Vc,max25 model using the 

independent validation dataset. We used three main evaluation metrics: the coefficients of 

ermination (R
2
), RMSE, and the regression bias. All model results presented in this study 

are shown in the original Vc,max25 units rather than the square root transformed unit that is the 

initial output of the PLSR model. The same spectral analytical approach was applied to the 

Brazilian spectra-age dataset to derive the community-level spectra-age model (Fig. S2 and 

Wu et al., 2017). All of the code used for model development and data analysis were 

developed in Matlab (Mathworks, Natick, MA, USA). 

Generalizability of spectra-Vc,max25 relationship 

We explored whether the spectra-Vc,max25 relationship can be generalized across 

species, leaf age and canopy environment through two tests. In the first test, we developed a 

spectra-based PLSR model using two-thirds of the Panamanian data for mature leaves to train 

the model (including all 16 species). We then applied this model to the remaining 

Panamanian dataset of mature leaves, as well as to the independent validation dataset of 

Panamanian immature leaves, and Brazilian mature and immature leaves. Through this test, it 

would enable us to assess whether the spectra-Vc,max25 relationship of mature leaves can also 

be applied to leaves of immature age class or leaves of a different forest site in Brazil. In the 

second test, we developed a new spectra-based model in which all our datasets (including 

two-thirds of all leaves from both Panama and Brazil) were used to train the model. Model 

performance was evaluated using the remaining, independent datasets, which are the same as 

that were used in the first test. Through this test, it would enable us to assess whether a single 

spectra-Vc,max25 relationship can be applied to leaves of both leaf age classes and different 

forest sites. 

  



Spectral-based seasonal variability in Vc,max25, or Vc,max25-age relationship, using a 

combination of spectral models of Vc,max25 and leaf ae 

With the developed spectra-Vc,max25 model and spectra-age model as described above, 

we then used these two models in combination to explore whether leaf spectra information 

alone can be used to reconstruct the life history variability in leaf Vc,max25 for tropical trees. 

The spectra-age dataset in Brazil were used for this test, as the dataset covered the leaf 

spectra throughout their life cycles (Wu et al., 2017) while having some ground truth of 

V max25 derived from gas exchange measurements (Albert et al., 2018). These two models are 

both at the community level  and their model regression coefficients are respectively shown 

in Figs. S1d and S2d. The models were driven by the input of leaf spectral reflectance only 

but can predict leaf Vc,max25 and leaf age respectively (see the provided sample Matlab script 

in Notes S1). By combining the model output of Vc,max25 and age together, the spectroscopy 

approach was thus used to estimate the Vc,max25-age relationship, or the life history variability 

in leaf Vc,max25 with leaf age.  

Results 

As shown in Fig. 1 and Table S1, we found large variability in leaf Vc,max25 for the 

surveyed 21 tropical trees from three tropical forest sites: field-measured Vc,max25 ranged from 

7- 02 µmol CO2 m
-2 

s
-1

. These surveyed trees also spanned a very large variation in leaf 

rphology, as shown in the observed LMA trait space (i.e. 70-213 g m
-2

). We also found 

that the variation in Vc,max25 is attributable to species (Fig. 1a and Table S1), leaf age (mature 

vs. immature; Fig. 1a), canopy environment (sunlit vs. shaded; Fig. 1a), and also forest sites 

(Fig. 1b). The large intra-specific variation in Vc,max25 is primarily associated with leaf age, 

and the large inter-specific variation in Vc,max25 is attributable to both species difference but 

also the forest sites. Such large variation in Vc,max25, especially the variation with leaf age, will 

make the traditional approaches for measuring this diversity challenging due to the 

requirement for lots of measurements.

We examined our first question of whether the spectroscopy approach can be an 

efficient, alternative means to help estimate Vc,max25 across species, leaf age, canopy 

environment and forest sites through the two tests (see Methods above). In the first test, we 

found that the model based solely on Panamanian mature leaves was able to predict the field-

observed Vc,max25 of independent Panamanian mature leaves with very high accuracy 

(R
2
=0.90; RMSE=5.9 µmol CO2 m

-2 
s

-1
; n=36 leaves; Fig. 2a), suggesting a tight covariation

  



in the spectra-Vc,max25 relationship for Panamanian forests across a diverse range of tree 

species, canopy heights and leaf traits (Table S1). However, this model did not perform as 

well when applied to a dataset of independent, Panamanian immature leaves from a subset of 

the same trees (n=9 species; Table S1), with the model fit having a marked deviation from the 

1:1 line (between modeled and observed Vc,max25) and displaying poor predictive ability 

=0.02; RMSE=20.7 µmol CO2 m
-2 

s
-1

; n=14 leaves; Fig. 2b). When the model of 

Panamanian mature leaves was applied to independent, Brazilian mature and immature leaves 

 model performance was also poor (R
2
=0.23; RMSE=38.8 µmol CO2 m

-2 
s

-1
; n=22 leaves; 

Fig. 2c). This showed that the model developed from Panamanian mature leaves could 

neither be directly applied to immature leaves of the same trees nor the leaves sampled from 

other tropical forests without marked reduction in predictive power (Fig. 2d).  

In the second test, we found that the new model trained on the data from all species, 

leaf ages, canopy environment, and forest sites performed dramatically better across the 

ole range of leaf types—immature leaves in Panama (R
2
=0.89; RMSE=3.9 µmol CO2 m

-2 

 n=14 leaves; Figs. 3 and S3a) and all leaf ages from Brazil (R
2
=0.68; RMSE=5.9 µmol 

2 m
-2 

s
-1

; n=22 leaves; Figs. 3 and S3b)—at the cost of only slightly lower prediction of 

ture Panamanian leaves (R
2
=0.86; RMSE=7.7 µmol CO2 m

-2 
s

-1
; n=36 leaves; Figs. 3 and 

S3c). In addition, compared with our initial model of Panamanian mature leaves (Fig. 2, first 

test), the new model (Fig. 3, second test) also significantly reduced the uncertainty in model 

predicted Vc,max25, as indicated by the horizontal error bars shown in Figs. 2 and 3. This 

analysis demonstrated that with sufficient leaf samples to train the spectra-Vc,max25 

relationship over the full trait space, a general spectra-based Vc,max25 model can be derived 

across species, leaf age, canopy environment, and forest sites. 

We next examined our second question: whether the spectroscopy approach alone is 

sufficient to simulate the life history trajectories of Vc,max25, or the Vc,max25-age relationship. To 

do this, we applied two models (i.e. the community-level spectra-Vc,max25 model and spectra-

age model) to the spectra-age dataset in Brazil (see Methods). The results showed that there 

was large variability in leaf Vc,max25 across leaf life cycles (i.e. from 15-days old to 400-days 

old), but that the spectroscopy approach presented here was able to track leaf age dependent 

variation in Vc,max25 (Fig. 4), particularly during the period from emergence to physiological 

full-maturity (from 15 to 150 days). With continued aging and senescence (>150 days), there 

was larger deviation between spectra-predicted and field-observed Vc,max25. This might largely 

 



be because our datasets had poor coverage of older leaves (from 150 days to 400 days), and 

thus the model for the senescent leaves is not well calibrated. 

Discussion 

Leaf carboxylation capacity Vc,max25 is central to the estimation of photosynthetic CO2 

uptake by tropical forests in ESMs. In this study, we demonstrated that the spectroscopy 

approach is able to accurately predict Vc,max25 across species with a large range in LMA trait 

space, leaf age, canopy position and height, and forest sites (Fig. 3 and Table S1). We also 

showed that the combined application of spectroscopy models of leaf Vc,max25 and age are 

sufficient to track life time variation in leaf Vc,max25 (Fig. 4). This represents a significant 

breakthrough in our ability to rapidly estimate and potentially map Vc,max25 in high spatial and 

temporal resolution in tropical forests.   

Consistent with previous studies (Field, 1983; Sobrado, 1994; Wilson et al., 2001; 

Kitajima et al., 2002; Kenzo et al., 2006; Pantin et al., 2012; Albert et al., 2018), we found 

ge variability in leaf Vc,max25 (i.e. 7-102 µmol CO2 m
-2 

s
-1

) with species, leaf age and 

canopy environment across 21 species sampled from the three lowland moist tropical forests. 

Such a wide range of variability in Vc,max25 is comparable with previous studies at the same 

est sites with larger sample size and a focus on mature leaves (i.e. 15-75 µmol CO2 m
-2 

s
-1 

m 65 species in Panama, Norby et al., 2017;
 
10-80 µmol CO2 m

-2 
s

-1
 from 38 species in 

Brazil, Domingues et al., 2014). It is also comparable with the observations from other moist 

tropical forest sites in Brazil (Carswell et al., 2000), Peru (Bahar et al., 2017) and Africa 

(Domingues et al., 2010).  

 These past studies together with our findings also suggest that leaf age is one of the 

most important sources of variation in Vc,max25, which is clearly shown in Figs. 1 and 4. Since 

V max25 can change markedly with leaf age and our observed Vc,max25 variability spanned 

ost the same range (13-90 µmol CO2 m
-2 

s
-1

) as that used to represent global variation in 

V max25 in current ESMs (Rogers, 2014), it further suggests the importance of including such 

age-dependent Vc,max25 variation in future model formulations. The high Vc,max25 variability 

associated with leaf age also highlights the value of our developed spectroscopy approach to 

enable rapid estimations of Vc,max25: the spectroscopy approach only takes a few seconds to 

estimate Vc,max25, once the model has been recalibrated, while the conventional approach 

 



using leaf gas exchange measurement of a photosynthetic CO2 response curves takes about an 

hour (or more). Furthermore, the conventional approach cannot simultaneously derive leaf 

age—an important piece of information needed to improve model representation of 

photosynthesis, especially in species-rich, evergreen tropical forests (Kim et al., 2012; Wu et 

al., 2016).  

Here we have demonstrated that leaf spectroscopy offers a tool to rapidly capture 

multiple important axes of variation in Vc,max25: A single spectra-based model of leaf Vc,max25 

was able to predict leaf Vc,max25 across tropical tree species with a very large variation in 

LMA trait space, leaf age, canopy position and forest sites with high confidence (Fig. 3 and 

Table S1). This finding validates pioneering work that demonstrated not only the feasibility 

of using leaf spectra to model Vc,max under a narrow range of species and conditions (Doughty 

et al., 2011; Serbin et al., 2012), but also dramatically expands our confidence to use the 

improved spectra-Vc,max25 model across a wide range of species, leaf developmental stages 

and locations.  

So what is the underlying mechanism for such a tight covariation between leaf spectra 

and Vc,max25 across the various axes of variation (i.e. species, leaf age, canopy positions and 

forest sites) we considered in this study? There are at least two potential hypotheses.  

The first is that the tight coordinated variation in leaf Vc,max25 and spectra was entirely 

based on their relationships with leaf nitrogen content (e.g. Dechant et al., 2017). The theory 

underlying this hypothesis is that leaf Vc,max25 is tightly coupled with the nitrogen content in 

Rubisco which comprises the largest fraction of N invested in a single enzyme within a leaf 

(e.g. Jacob et al., 1995; Onoda et al., 2004; Dong et al., 2017; Scafaro et al., 2017; Evans & 

Clark, 2019). This hypothesis seems moderately supported by two previous studies conducted 

at our study sites (that focused on mature leaves with larger sample size), including 

nificant, but only modest correlations of Vc,max25 with leaf nitrogen (R
2
=0.31; Norby et al., 

17; R
2
=0.33; Dominguez et al., 2014). Given that leaf spectra can efficiently capture 

variation in leaf nitrogen content (e.g. Asner & Martin, 2008; Serbin et al., 2014; Dechant et 

al., 2017), it is expected that leaf spectra can also be used to predict leaf Vc,max25. However, 

this hypothesis does not stand up to further scrutiny for several reasons. First, if the 

correlation with leaf nitrogen content was the primary driver of our ability to estimate Vc,max25 

with spectra, it does not explain why leaf spectra shows far higher predictive power than 

 



using leaf nitrogen content alone (R
2
=0.89 for leaf spectra in this study vs. R

2
=0.31-0.33 for 

leaf nitrogen content as shown in Dominguez et al., 2014 and Norby et al., 2017). 

Furthermore, the Vc,max25-leaf nitrogen relationship does not always hold up at the site level 

level (Bahar et al. 2017; Rogers et al., 2017b; Evans & Clark, 2019) and recent global 

synthesis have shown that variation in leaf nitrogen can only explain a small portion of 

variation in Vc,max (Ali et al., 2015; Smith et al., 2019). Secondarily, many other studies 

suggest that in addition to leaf nitrogen content, other leaf traits, e.g. leaf phosphorus content 

(e.g. Walker et al., 2014; Norby et al., 2017), leaf chlorophyll content (e.g. Croft et al., 

2017), LMA (e.g. Walker et al., 2014), and age (e.g. Albert et al., 2018), are also related with 

V max25, and inclusion of more traits as predictive variables can significantly improve the 

power of trait based model to predict Vc,max25, compared with the just one trait, leaf nitrogen 

content (e.g. Walker et al., 2014). Finally, Serbin et al (2012) showed that in poplar the 

power of leaf N content and LMA to predict Vc,max varied with temperature treatments, but 

the reflectance spectroscopy approach collapsed this variation into a single model. This 

suggests that the ability of the spectroscopy approach to predict Vc,max is not entirely 

dependent on the ability of spectroscopy to predict leaf N content and LMA and that other 

factors are likely contributing to the success of the approach. 

Since the correlation with leaf nitrogen might not be the only reason for the derived 

spectra-Vc,max25 model, this further leads to our second hypothesis: leaf Vc,max25 is correlated 

with multiple leaf traits and processes that determine Rubisco content and activity (e.g. leaf 

nitrogen content, leaf phosphorus content, leaf chlorophyll concentrations, LMA, leaf age, 

and many others we do not yet understand), and leaf spectra emerge from the ensemble of 

properties that define leaf chemical, morphological, and phenological status (e.g. Asner & 

Martin, 2008; Serbin et al., 2014; Chavana-Bryant et al., 2017, 2019). As such, leaf spectra 

can be used to help infer leaf Vc,max25, and are indeed a better predictor of leaf Vc,max25 (e.g. 

Serbin et al., 2012) than alternative trait approaches that leverage well established links 

between Vc,max25 and just one or a few individual leaf traits (e.g. Walker et al., 2014). We 

believe this second hypothesis offers a more plausible explanation for the power of the 

spectra-Vc,max25 approach. However, a more comprehensive study to elucidate the underlying 

mechanisms that enable the spectra-Vc,max25 model is still needed.     

  



Our finding that the spectra-Vc,max25 model of mature leaves in Panama creates model 

bias when applied to Panamanian immature leaves and all Brazilian leaves is also interesting. 

This observation could be attributable to different ranges in Vc,max25 for model development 

d validation (e.g. 17-102 µmol CO2 m
-2 

s
-1

 for the Panamanian mature leaf model; 21-63 

ol CO2 m
-2 

s
-1

 for Panamanian immature leaves; 7-46 µmol CO2 m
-2 

s
-1

 for all leaves in 

Brazil). However, a more likely explanation is that the spectra-trait-Vc,max25 linkages (e.g. 

regression coefficients) vary with leaf age (e.g. Field, 1983; Wilson et al., 2001; Chavana-

Bryant et al., 2017, 2019; Wu et al., 2017) and forest sites of different soil types and fertility 

(e.g. Walker et al., 2014; Norby et al., 2017). Regardless of these potential reasons, our 

finding (Fig. 3) suggests that including as many axes of variation as possible in the training 

dataset is critical to develop a broadly applicable spectra-Vc,max25 model. Both leaf spectra and 

V max25 can vary with vertical canopy profiles (e.g. various canopy positions including upper 

canopy, mid-canopy and understory trees; sunlit and shaded environments), different tropical 

forests types (e.g. flooded, Caatinga, second growth, and upland forests) and other leaf habits 

(e.g. deciduous trees) that are currently either under or not sampled in this study. Therefore 

we recognize that further in-depth pan-tropical and global sampling and analysis are still 

needed to develop a highly robust spectra-Vc,max25 model that can be applied with confidence 

throughout the tropics and ultimately globally. It is also worth noting that when extending the 

spectra-Vc,max25 model to entire vertical canopy profiles, the epiphyll effect is another issue 

that is needed to be considered, as many old leaves in the shaded canopy environment 

develop epiphylls (Sonnleitner et al., 2009), which strongly impacts leaf spectral reflectance 

(see Roberts et al., 1998).  

We also showed that spectroscopy is able to simulate the life history variability in 

V max25 with leaf age within and across tropical tree species (Fig. 4). The spectroscopy 

derived age-dependent Vc,max25 is also comparable with direct measurements
 
by Wu et al 

(2016) in terms of both amplitude and the relative trend across three leaf developmental 

stages: young (1-2 months), mature (3-5 months) and old (6-14 months). This suggests that 

the spectroscopy approach can be used to track lifetime trajectories in leaf traits (including 

but not limited to Vc,max25 shown here), and is a marked extension of previous studies that 

demonstrated the feasibility of linking leaf spectroscopy to model leaf Vc,max25
 
(e.g. Serbin et 

al., 2012) or leaf age
 
(e.g. Chavana-Bryant et al., 2017). Moreover, the success of 

spectroscopy-based Vc,max25–age relationships also highlights that the spectroscopy approach 

can not only be a novel means to capture the variability of Vc,max25, particularly associated 

 



with leaf age, but also rapidly generate datasets that enable the exploration of temporal and 

spatial variability in Vc,max25 within and across species, an important piece of process 

knowledge that greatly needs to be incorporated in future ESMs
 
(e.g. Xu et al., 2017).  

Finally, our finding that there exists a tight relationship among leaf-level spectra, 

V max25 and leaf age can likely be extended to canopy and ecosystem scales. As shown by 

many previous theoretical and empirical studies (Asner, 1998; Asner & Martin, 2008; 

Ollinger, 2011; Singh et al., 2015), the fundamental changes in leaf optical properties with 

underlying variation in leaf traits is not scale-dependent; that is leaf-level or canopy-scale 

spectra changes in concert with leaf traits. Meanwhile, Serbin et al (2015) demonstrated that 

the imaging spectroscopy technique could be effectively used to infer leaf Vc,max25 from 

canopy-scale hyperspectral reflectance for managed agricultural sites. Given our predictive 

success at the leaf level, it is possible that our findings could help enable predictions at the 

canopy level in tropical forest ecosystems. Additionally, Wu et al (2018) connected leaf scale 

optical properties (i.e. reflectance and transmittance) with canopy radiative transfer models to 

simulate the leaf age effect on canopy reflectance in tropical forest ecosystems. The 

simulated canopy reflectance from this analysis showed a good agreement with observations 

from high resolution WorldView-2 imagery, further suggesting a potential way to scale up 

leaf-scale spectra-Vc,max25 relationship explored here to the canopy scale. Collectively, these 

recent studies, together with our current findings (Figs. 3 and 4), help build the foundation 

towards the possibility of monitoring Vc,max25-age relationships at canopy and ecosystem 

scales using state-of-the-art remote sensing technology: e.g. leveraging imaging spectroscopy 

from unmanned aerial systems (UASs; Adão et al., 2017), aircraft (e.g. AVIRIS, Serbin et al., 

2015), and the suite of current and planned space-borne platforms (e.g. EnMAP, Guanter et 

al., 2015; HISUI, Stavros et al., 2017; Surface Biology and Geology mission, National 

Academies of Sciences E, Medicine, 2018). Imaging spectroscopy, if successful in capturing 

V max25–age relationships at canopy scales, will greatly advance our capability to monitor and 

mechanistically understand Vc,max25 variability across both space and time, providing critically 

important datasets to parameterize and evaluate ESMs.    

 



Acknowledgements 

This work was supported by the Next-Generation Ecosystem Experiments–Tropics project 

supported by the U.S. DOE, Office of Science, Office of Biological and Environmental 

Research and through contract #DE-SC0012704 to Brookhaven National Laboratory. L.P.A. 

was supported by Voss postdoctoral research funding at Brown University. The field work in 

Brazil was supported by US National Science Foundation (NSF, OISE-0730305). We also 

acknowledge Mick Eltringham for canopy access assistance in Brazil. The authors declare no 

competing interests.  

Author Contributions 

JW, AR, LPA, SRS and SPS designed the study. KE, SPS, AR, BTW and JW collected the 

field data in Panama. LPA, NP, RCO and JW collected the field data in Brazil. JW performed 

the data quality control and analysis. JW drafted the manuscript, and all authors contributed 

to the final version.   

References 

Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa JJ. 2017. Hyperspectral 

imaging: A review on UAV-based sensors, data processing and applications for 

agriculture and forestry. Remote Sensing 9, https://doi.org/10.3390/rs9111110. 

Albert LP, Wu J, Prohaska N, Camargo PB, Huxman TE, Tribuzy ES, Ivanov VY, 

Oliveira RS, Garcia S, Smith MN et al. 2018. Age‐ dependent leaf physiology and 

consequences for crown‐ scale carbon uptake during the dry season in an Amazon 

evergreen forest. New Phytologist 219: 870-884. 

Ali AA, Xu C, Rogers A, McDowell NG, Medlyn BE, Fisher RA, Wullschleger SD, 

Reich PB, Vrugt JA, Bauerle WL et al. 2015. Global‐ scale environmental control 

of plant photosynthetic capacity. Ecological Applications 25: 2349-2365. 

Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA. 2014. Using leaf optical 

properties to detect ozone effects on foliar biochemistry. Photosynthesis 

Research 119: 65-76. 

Asner GP. 1998. Biophysical and biochemical sources of variability in canopy 

reflectance. Remote Sensing of Environment 64: 234-253. 



Asner GP, Martin RE. 2008. Spectral and chemical analysis of tropical forests: Scaling 

from leaf to canopy levels. Remote Sensing of Environment 112: 3958-3970. 

Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza-Jiménez L, 

Martinez P. 2014. Amazonian functional diversity from forest canopy chemical 

assembly. Proceedings of the National Academy of Sciences 111: 5604-5609. 

Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE. 2016. 

Progressive forest canopy water loss during the 2012–2015 California 

drought. Proceedings of the National Academy of Sciences 113: E249-E255. 

Bahar NH, Ishida FY, Weerasinghe LK, Guerrieri R, O'Sullivan OS, Bloomfield KJ, 

Asner GP, Martin RE, Lloyd J, Malhi Y et al. 2017. Leaf‐ level photosynthetic 

capacity in lowland Amazonian and high‐ elevation Andean tropical moist forests of 

Peru. New Phytologist 214: 1002-1018. 

Barnes ML, Breshears DD, Law DJ, van Leeuwen WJ, Monson RK, Fojtik AC, Barron-

Gafford GA, Moore DJ. 2017. Beyond greenness: Detecting temporal changes in 

photosynthetic capacity with hyperspectral reflectance data. PLoS ONE 12, 

https://doi.org/10.1371/journal.pone. 0189539. 

Bernacchi CJ, Bagley JE, Serbin SP, RUIZ‐ VERA UM, Rosenthal DM, Van Loocke A. 

2013. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant, Cell 

& Environment 36: 1641-1657. 

Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, 

Swenson SC. 2011. Improving canopy processes in the Community Land Model 

version 4 (CLM4) using global flux fields empirically inferred from FLUXNET 

data. Journal of Geophysical Research: Biogeosciences 116, 

https://doi.org/10.1029/2010JG001593. 

Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, Nobre AD, 

Grace J, Jarvis PG. 2000. Photosynthetic capacity in a central Amazonian rain 

forest. Tree Physiology 20: 179-186. 

Chavana‐ Bryant C, Malhi Y, Wu J, Asner GP, Anastasiou A, Enquist BJ, Caravasi C, 

Eric G, Doughty CE, Saleska SR et al. 2017. Leaf aging of Amazonian canopy trees 

as revealed by spectral and physiochemical measurements. New Phytologist 214: 

1049-1063. 

Chavana-Bryant C, Malhi Y, Anastasiou A, Enquist BJ, Cosio EG, Keenan TF, Gerard 

FF. 2019. Leaf age effects on the spectral predictability of leaf traits in Amazonian 

canopy trees. Science of the Total Environment 666: 1301-1315. 



Chen S, Hong X, Harris CJ, Sharkey PM. 2004. Spare modeling using orthogonal forest 

regression with PRESS statistic and regularization. IEEE Transaction on Systems, 

Man and Cybernetics 34: 898-911. 

Coley PD. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical 

forest. Ecological Monographs 53: 209-234. 

Condit RS, Ashton MS, Balslev H, Brokaw NVL, Bunyavejchewin S, Chuyong GB, Co 

L, Dattaraja HS, Davies SJ, Esufali S et al. 2005. Tropical tree a-diversity: results 

from a worldwide network of large plots. Biologike Skrifer 55: 565-582. 

Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM. 2017. Leaf chlorophyll 

content as a proxy for leaf photosynthetic capacity. Global Change Biology 23: 3513-

3524. 

Curran PJ. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30: 

271-278.

Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MM, Coe 

MT, DeFries RS, Keller M, Longo M et al. 2012. The Amazon basin in 

transition. Nature 481: 321-328. 

Dechant B, Cuntz M, Vohland M, Schulz E, Doktor D. 2017. Estimation of photosynthesis 

traits from leaf reflectance spectra: correlation to nitrogen content as the dominant 

mechanism. Remote Sensing of Environment 196: 279-292. 

De Jong S. 1993. SIMPLS: an alternative approach to partial least squares 

regression. Chemometrics and Intelligent Laboratory Systems 18: 251-263. 

De Kauwe MG, Lin YS, Wright IJ, Medlyn BE, Crous KY, Ellsworth DS, Maire V, 

Prentice IC, Atkin OK, Rogers A et al. 2016. A test of the ‘one‐ point method’ for 

estimating maximum carboxylation capacity from field‐ measured, light‐ saturated 

photosynthesis. New Phytologist 210: 1130-1144. 

De Moura YM, Galvão LS, Hilker T, Wu J, Saleska S, do Amaral CH, Nelson BW, 

Lopes AP, Wiedeman KK, Prohaska N et al. 2017. Spectral analysis of amazon 

canopy phenology during the dry season using a tower hyperspectral camera and 

modis observations. ISPRS Journal of Photogrammetry and Remote Sensing 131: 52-

64. 

Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth 

C, Prentice IC et al. 2016. The global spectrum of plant form and function. Nature 

529: 167-171. 



Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, 

Hien F, Compaore H, Aiallo A et al. 2010. Co‐ limitation of photosynthetic capacity 

by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & 

Environment 33: 959-980. 

Domingues TF, Martinelli LA, Ehleringer JR. 2014. Seasonal patterns of leaf-level 

photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecology & 

Diversity 7: 189-203. 

Dong N, Prentice IC, Evans BJ, Caddy-Retalic S, Lowe AJ, Wright IJ. 2017. Leaf 

nitrogen from first principles: field evidence for adaptive variation with climate. 

Biogeosciences 14: 481–495. 

Doughty CE, Asner GP, Martin RE. 2011. Predicting tropical plant physiology from leaf 

and canopy spectroscopy. Oecologia 165: 289-299. 

Elvidge CD. 1990. Visible and near infrared reflectance characteristics of dry plant 

materials. International Journal of Remote Sensing 11: 1775-1795. 

Evans JR, Clark VC. 2019. The nitrogen cost of photosynthesis. Journal of Experimental 

Botany 70: 7-15. 

Farquhar GV, von Caemmerer SV, Berry JA. 1980. A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90. 

Field C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a 

control on the allocation program. Oecologia 56: 341-347. 

Geladi P, Kowalski BR. 1986. Partial least-squares regression: a tutorial. Analytica Chimica 

Acta 185: 1-17. 

Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, 

Hollstein A, Rossner G, Chlebek C, et al. 2015. The EnMAP spaceborne imaging 

spectroscopy mission for earth observation. Remote Sensing 7: 8830-8857. 

Han Q, Kawasaki T, Nakano T, Chiba Y. 2008. Leaf-age effects on seasonal variability in 

photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen 

concentration within a Pinus densiflora crown. Tree Physiology 28: 551-558. 

Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, de 

Camargo PB, Wofsy SC. 2007. Seasonal controls on the exchange of carbon and 

water in an Amazonian rain forest. Journal of Geophysical Research: 

Biogeosciences 112: G03008, https://doi.org/10.1029/2006JG000365. 



Jacob J, Greitner C, Drake BG. 1995. Acclimation of photosynthesis in relation to Rubisco 

and non‐ structural carbohydrate contents and in situ carboxylase activity in Scirpus 

olneyi grown at elevated CO2 in the field. Plant, Cell & Environment 18: 875-884. 

Kattge J, Knorr W. 2007. Temperature acclimation in a biochemical model of 

photosynthesis: a reanalysis of data from 36 species. Plant, Cell & Environment 30: 

1176-1190. 

Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, 

Reich PB, Wright IJ et al. 2011. TRY–a global database of plant traits. Global 

Change Biology 17: 2905-2935. 

Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T. 2006. Changes in 

photosynthesis and leaf characteristics with tree height in five dipterocarp species in a 

tropical rain forest. Tree Physiology 26: 865-873. 

Kim Y, Knox RG, Longo M, Medvigy D, Hutyra LR, Pyle EH, Wofsy SC, Bras RL, 

Moorcroft, PR. 2012. Seasonal carbon dynamics and water fluxes in an Amazon 

rainforest. Global Change Biology 18: 1322-1334. 

Kitajima K, Mulkey SS, Samaniego M, Wright J.S. 2002. Decline of photosynthetic 

capacity with leaf age and position in two tropical pioneer tree species. American 

Journal of Botany 89: 1925-1932. 

Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009. Characterizing 

canopy biochemistry from imaging spectroscopy and its application to ecosystem 

studies. Remote Sensing of Environment 113: S78-S91. 

Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, 

Cano FJ, Carter KR, Cavaleri MA, Cernusak LA, Chamber JQ, Crous KY et al. 

2019. Acclimation and adaptation components of the temperature dependence of plant 

photosynthesis at the global scale. New Phytologist 222: 768-784. 

Long SP, Bernacchi CJ. 2003. Gas exchange measurements, what can they tell us about the 

underlying limitations to photosynthesis? Procedures and sources of error. Journal of 

Experimental Botany 54: 2393-2401. 

Lopes AP, Nelson BW, Wu J, de Alencastro GPML, Tavares JV, Prohaska N, Martins 

GA, Saleska SR. 2016. Leaf flush drives dry season green-up of the central 

Amazon. Remote Sensing of Environment 182: 90-98. 

Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, 

De Angelis P, Forstreuter M, Jach ME, Kellomäki S et al. 1999. Effects of 



elevated [CO2] on photosynthesis in European forest species: a meta‐ analysis of 

model parameters. Plant, Cell & Environment 22: 1475-1495. 

Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, 

Murayama S, Koizumi H. 2010. Effects of seasonal and interannual variations in 

leaf photosynthesis and canopy leaf area index on gross primary production of a cool-

temperate deciduous broadleaf forest in Takayama, Japan. Journal of Plant 

Research 123: 563-576. 

National Academies of Sciences E, Medicine. 2018. Thriving on Our Changing Planet: A 

Decadal Strategy for Earth Observation from Space. Washington, DC: The National 

Academies Press. 

Nepstad DC, Moutinho P, Dias‐ Filho MB, Davidson E, Cardinot G, Markewitz D, 

Figueiredo R, Vianna N, Chambers J, Ray D et al. 2002. The effects of partial 

throughfall exclusion on canopy processes, aboveground production, and 

biogeochemistry of an Amazon forest. Journal of Geophysical Research: 

Atmospheres 107: https://doi.org/10.1029/2001JD000360. 

Niinemets, U. 2016. Leaf age dependent changes in within-canopy variation in leaf 

functional traits: a meta-analysis. Journal of Plant Research 129: 313–338. 

Norby RJ, Gu L, Haworth IC, Jensen AM, Turner BL, Walker AP, Warren JM, 

Weston DJ, Xu C, Winter K. 2017. Informing models through empirical 

relationships between foliar phosphorus, nitrogen and photosynthesis across diverse 

woody species in tropical forests of Panama. New Phytologist 215: 1425-1437. 

Ollinger SV. 2011. Sources of variability in canopy reflectance and the convergent properties 

of plants. New Phytologist 189: 375-394. 

Onoda Y, Hikosaka K, Hirose T. 2004. Seasonal change in the balance between capacities 

of RuBP carboxylation and RuBP regeneration affects CO2 response of 

photosynthesis in Polygonum cuspidatum. Journal of Experimental Botany 56: 755-

763. 

Pantin F, Simonneau T, Muller B. 2012. Coming of leaf age: control of growth by 

hydraulics and metabolics during leaf ontogeny. New Phytologist 196: 349-366. 

Reich PB, Uhl C, Walters MB, Prugh L, Ellsworth DS. 2004. Leaf demography and 

phenology in Amazonian rain forest: a census of 40000 leaves of 23 tree 

species. Ecological Monographs 74: 3-23. 



Ricciuto D, Sargsyan K, Thornton P. 2018. The impact of parametric uncertainties on 

biogeochemistry in the E3SM land model. Journal of Advances in Modeling Earth 

Systems 10: 297-319. 

Rice AH, Pyle EH, Saleska SR, Hutyra L, Palace M, Keller M, De Camargo PB, 

Portilho K, Marques DF, Wofsy SC. 2004. Carbon balance and vegetation 

dynamics in an old‐ growth Amazonian forest. Ecological Applications 14: 55-71. 

Roberts DA, Nelson BW, Adams JB, Palmer F. 1998. Spectral changes with leaf aging in 

Amazon caatinga. Trees 12: 315-325. 

Rogers A. 2014. The use and misuse of Vc,max in Earth System Models. Photosynthesis 

Research 119: 15-29. 

Rogers A, Medlyn BE, Dukes JS, Bonan G, Caemmerer S, Dietze MC, Kattge J, Leakey 

AD, Mercado LM, Niinemets Ü et al. 2017a. A roadmap for improving the 

representation of photosynthesis in Earth system models. New Phytologist 213: 22-42. 

Rogers A, Serbin SP, Ely KS, Sloan VL, Wullschleger SD. 2017b. Terrestrial biosphere 

models underestimate photosynthetic capacity and CO2 assimilation in the 

Arctic. New Phytologist 216: 1090-1103. 

Rosipal R, Krämer N. 2006. Overview and recent advances in partial least squares. 

In Saunders, C., Grobelink, M., Gunn, S., & Shawe-Taylor, J. (Eds.), Subspace, 

Latent Structure and Feature Selection. Berlin: Springer, 34-51. 

Scafaro AP, Xiang S, Long BM, Bahar NH, Weerasinghe LK, Creek D, Evans JR, Reich 

PB, Atkin OK. 2017. Strong thermal acclimation of photosynthesis in tropical and 

temperate wet-forest tree species: the importance of altered Rubisco content. Global 

Change Biology 23: 2783-2800. 

Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P, Miller C, 

Frankenberg C, Hibbard K, Cox P. 2015. Observing terrestrial ecosystems and the 

carbon cycle from space. Global Change Biology 21: 1762-1776. 

Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel DS, Schaepman 

ME. 2017. Mapping functional diversity from remotely sensed morphological and 

physiological forest traits.  Nature Communications 8: 1441-1441, 

https://doi.org/10.1038/s41467-017-01530-3. 

Schweiger AK, Cavender-Bares J, Townsend PA, Hobbie SE, Madritch MD, Wang R, 

Tilman D, Gamon J A. 2018. Plant spectral diversity integrates functional and 

phylogenetic components of biodiversity and predicts ecosystem function. Nature 

Ecology & Evolution 2: 976-982. 



Serbin SP, Dillaway DN, Kruger EL, Townsend PA. 2012. Leaf optical properties reflect 

variation in photosynthetic metabolism and its sensitivity to temperature. Journal of 

Experimental Botany 63: 489-502. 

Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA. 2014. Spectroscopic 

determination of leaf morphological and biochemical traits for northern temperate and 

boreal tree species. Ecological Applications 24: 1651-1669. 

Serbin SP, Singh A, Desai AR, Dubois SG, Jablonski AD, Kingdon CC, Kruger EL, 

Townsend PA. 2015. Remotely estimating photosynthetic capacity, and its response 

to temperature, in vegetation canopies using imaging spectroscopy. Remote Sensing of 

Environment 167: 78-87. 

Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic 

carbon dioxide response curves for C3 leaves. Plant, Cell & Environment 30: 1035-

1040. 

Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans 

JR. 2018. Hyperspectral reflectance as a tool to measure biochemical and 

physiological traits in wheat. Journal of Experimental Botany 3: 483-496.  

Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA. 2015. Imaging spectroscopy 

algorithms for mapping canopy foliar chemical and morphological traits and their 

uncertainties. Ecological Applications 25: 2180-2197. 

Smith NJ, Keenan TF, Prentice IC, Wang H, Wright IJ, Niinemets U, Crous KY, 

Domingues TF, Guerrieri R, Ishida FY et al. 2019. Global photosynthetic capacity 

is optimized to the environment. Ecology Letters 22: 506-517.  

Sobrado MA. 1994. Leaf age effects on photosynthetic rate, transpiration rate and nitrogen 

content in a tropical dry forest. Physiologia Plantarum 90: 210-215. 

Sonnleitner M, Dullinger S, Wanek W, Zechmeister H. 2009. Microclimatic patterns 

correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain 

forest in Costa Rica. Journal of Tropical Ecology 25: 321-330. 

Sperry J. 2013. Cutting‐ edge research or cutting‐ edge artefact? An overdue control 

experiment complicates the xylem refilling story. Plant, Cell & Environment 36: 

1916-1918. 

Stavros EN, Schimel D, Pavlick R, Serbin S, Swann A, Duncanson L, Fisher JB, 

Fassnacht F, Ustin S, Dubayah R et al. 2017. ISS observations offer insights into 

plant function. Nature Ecology and Evolution 1: 0194. 



Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, 

Castilho CV, Magnusson WE, Molino JF et al. 2013. Hyperdominance in the 

Amazonian tree flora. Science 342: 1243092. 

Stinziano JR, Morgan PB, Lynch DJ, Saathoff AJ, McDermitt DK, Hanson DT. 2017. 

The rapid A–Ci response: photosynthesis in the phenomic era. Plant, Cell & 

Environment 40: 1256-1262. 

Turner BL, Romero TE. 2009. Short-term changes in extractable inorganic nutrients during 

storage of tropical rain forest soils. Soil Science Society of America Journal 73: 1972-

1979. 

Walker AP, Beckerman AP, Gu L, Kattge J, Cernusak LA, Domingues TF, Scales JC, 

Wohlfahrt G, Wullschleger SD, Woodward FI. 2014. The relationship of leaf 

photosynthetic traits– Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific 

leaf area: a meta‐ analysis and modeling study. Ecology and Evolution 4: 3218-3235. 

Walker AP, Quaife T, Bodegom PM, De Kauwe MG, Keenan TF, Joiner J, Lomas MR, 

MacBean N, Xu C, Yang X et al. 2017. The impact of alternative trait‐ scaling 

hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross 

primary production. New Phytologist 215: 1370-1386. 

Wilson KB, Baldocchi DD, Hanson PJ. 2001. Leaf age affects the seasonal pattern of 

photosynthetic capacity and net ecosystem exchange of carbon in a deciduous 

forest. Plant, Cell & Environment 24: 571-583. 

Wolter PT, Townsend PA, Sturtevant BR, Kingdon CC. 2008. Remote sensing of the 

distribution and abundance of host species for spruce budworm in Northern 

Minnesota and Ontario. Remote Sensing of Environment 112: 3971-3982. 

Wright SJ, Horlyck V, Basset Y, Barrios H, Bethancourt A, Bohlman SA, Gilbert GS, 

Goldstein G, Graham EA, Kitajima K et al. 2003. Tropical canopy biology 

program, Republic of Panama. Studying forest canopies from above: the International 

Canopy Crane Network, eds Basset, Y., Horlyck, V., & Wright, S.J. (Smithsonian 

Tropical Research Institute and the United Nations Environmental Programme, 

Panama City, Panama), 137-155. 

Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, 

Stark SC, Christoffersen B, Prohaska N et al. 2016. Leaf development and 

demography explain photosynthetic seasonality in Amazon evergreen 

forests. Science 351: 972-976. 



Wu J, Chavana‐ Bryant C, Prohaska N, Serbin SP, Guan K, Albert LP, Yang X, 

Leeuwen WJ, Garnello AJ, Martins G et al. 2017. Convergence in relationships 

between leaf traits, spectra and age across diverse canopy environments and two 

contrasting tropical forests. New Phytologist 214: 1033-1048. 

Wu J, Kobayashi H, Stark SC, Meng R, Guan K, Tran NN, Gao S, Yang W, 

Restrepo‐ Coupe N, Miura T et al. 2018. Biological processes dominate seasonality 

of remotely sensed canopy greenness in an Amazon evergreen forest. New 

Phytologist 217: 1507-1520. 

Xu QS, Liang YZ. 2001. Monte Carlo cross validation. Chemometrics and Intelligent 

Laboratory Systems 56: 1-11. 

Xu X, Medvigy D, Wright JS, Kitajima K, Wu J, Albert LP, Martins GA, Saleska SR, 

Pacala SW. 2017. Variations of leaf longevity in tropical moist forests predicted by a 

trait‐ driven carbon optimality model. Ecology Letters 20: 1097-1106. 

Yendrek C, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, McIntyre L, Leakey 

A, Ainsworth E. 2017. High-throughput phenotyping of maize leaf physiology and 

biochemistry using hyperspectral reflectance. Plant Physiology 173: 614-626. 



Figure legends 

Figure 1. Large variation in leaf Vc,max25 (a) within individual trees and (b) across tropical 

forests. The data were from the Tapajos K67 site in Brazil, the San Lorenzo crane site (SLZ) 

and the Parque Natural Metropolitano crane site (PNM) in The Republic of Panama. At the 

individual tree level (a), Vc,max25 is primarily associated with leaf development (orange for 

variation in mature leaves, and blue for variation in immature leaves; see Methods) and 

canopy position (circles for the leaves sampled from the sunlit canopy environment, and 

triangles for the leaves sampled from the shaded canopy environment). Across tropical 

forests (b), the spread of tree specific (sunlit canopy, mature leaves) mean Vc,max25 of each 

forest site is displayed with a boxplot, in which the central mark is the median, the edges are 

 25
th

 and 75
th

 percentiles, and the whiskers are the 5
th

 and 95
th

 percentiles.

Figure 2. A spectra-Vc,max25 model was trained using two thirds of the dataset from mature 

leaves measured in Panama, and then evaluated using the independent validation dataset 

collected in (a) Panamanian mature leaves, (b) Panamanian immature leaves, (c) Brazilian 

mature and immature leaves, and (d) all leaf classes collected in Panama and Brazil. Error 

bars denote the 95% confidence intervals for each predicted value based on the ensemble 

PLSR models (i.e. each PLSR model is represented by a set of PLSR fitted spectral 

coefficients, and in total includes 100 Monte-Carol model runs; see the Materials and 

Methods section); the gray line shows the ordinary least square regression fit, and the black 

li e shows the 1:1 line.   

Figure 3. The final spectra-Vc,max25 model was trained using two thirds of our entire dataset, 

and then applied to the remaining, independent validation dataset. Error bars denote the 95% 

confidence intervals for each predicted value based on the ensemble PLSR models, the gray 

line shows the ordinary least square regression fit, and the black line shows the 1:1 line.   

Figure 4. The combination of our final spectral model for Vc,max25 (Fig. 3) and the leaf age 

model (see Wu et al., 2017; also see the Materials and Methods section) enables the 

prediction of the life history trajectories of leaf Vc,max25 (grey circles) in an independent 

spectra-age dataset collected in Brazil (see Methods). Here we show that for a given leaf age 

(determined by the spectra model) we can capture the dynamics of field observed Vc,max25 (red 

circles). See Supporting Information Table S1 for the full species names, error bars denote 

the 95% confidence interval of spectral predictions. 

  



Supporting Information 

Fig. S1 Example demonstration of partial least squares regression (PLSR) analysis for spectra-Vc,max25 

relationship. 

Fig. S2 Example demonstration of partial least squares regression (PLSR) analysis for spectra-age 

relationship. 

Fig. S3 The final spectra-Vc,max25 model was trained using two thirds of our entire dataset, and then 

applied to the remaining, independent validation datasets. 

Table S1 Site, species, canopy positions, traits and leaf age for trees sampled with leaf spectral and 

physiological measurements in two Panamanian tropical forests and one Brazilian tropical forest.  

Table S2 Leaf gas exchange, spectra, LMA, and age data sources.  

Notes S1. The sample code for a combined, spectral models of leaf Vc,max25 and age. 






