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Understanding the complex interactions of protein posttranslational
modifications (PTMs) represents a major challenge in metabolic engi-
neering, synthetic biology, and the biomedical sciences. Here, we
present a workflow that integrates multiplex automated genome
editing (MAGE), genome-scale metabolic modeling, and atomistic
molecular dynamics to study the effects of PTMs on metabolic
enzymes and microbial fitness. This workflow incorporates comple-
mentary approaches across scientific disciplines; provides molecular
insight into how PTMs influence cellular fitness during nutrient shifts;
and demonstrates how mechanistic details of PTMs can be explored
at different biological scales. As a proof of concept, we present a
global analysis of PTMs on enzymes in the metabolic network of
Escherichia coli. Based on our workflow results, we conduct a more
detailed, mechanistic analysis of the PTMs in three proteins: enolase,
serine hydroxymethyltransferase, and transaldolase. Application of
this workflow identified the roles of specific PTMs in observed ex-
perimental phenomena and demonstrated how individual PTMs reg-
ulate enzymes, pathways, and, ultimately, cell phenotypes.

systems biology | posttranslational modifications | metabolism |
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The confluence of genomic analyses and computational power
is rapidly changing the types of questions that can now be

addressed in the biological and medical sciences. Current ge-
nomic, proteomic, and metabolomic datasets enable quantitative
tracking of RNA transcripts, proteins, and metabolites in un-
precedented detail (1–5). On the other hand, computational
methods are limited in their capacity to address this increasingly
diverse span of experimental data types (6). Addressing these
and other challenges brought forth by these advancements re-
quires creating interdisciplinary frameworks upon which dispa-
rate biological data types can be analyzed and interpreted.
Here, we take advantage of several synergistic domains of

science—systems biology, biochemistry, and synthetic biology—to
develop a workflow that reconciles systems-level, multiomics anal-
ysis and genome-scale modeling with all-atom molecular dynamics
(MD) simulations. Bringing these disparate domains together en-
ables us to address the multilayered challenge of characterizing
posttranslational modifications (PTMs) of proteins. To this end, the
confluence of these technologies addresses the questions: “What
does each PTM do?” and “How does the cell use PTMs to regulate
itself during changes in environmental conditions?”
It is widely accepted that PTMs are central to the elaborate

control mechanisms that regulate bacterial metabolism as nutri-
tional sources change (7–9). However, a mechanistic understanding
of how PTMs on metabolic enzymes influence cellular fitness re-
mains unclear. On one hand, great efforts have been made to

understand how enzyme activity is controlled through PTMs
through decades of biochemistry research. On the other hand,
mechanisms of cellular adaptation are less clear, as applying omics
data to study PTMs remains a challenge. Hundreds of potentially
functional PTM sites have been identified in bacteria (10). While
some may be spurious and low-stoichiometry chemical modifica-
tions (11), many are high stoichiometry and likely to regulate bac-
terial metabolism (12–16). However, it remains difficult to unravel
the physiological roles of the PTMs in a high-throughput manner.
Studying PTMs is a multilayered challenge, in which one must

first, demonstrate how modifications of protein residues influ-
ence protein activity; and second, understand if the changes
in proteins influence pathways and cell physiology. To address
this multifaceted question, our workflow consists of three stages
(Fig. 1). In the first stage, we use genome-scale metabolic
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modeling to identify a subset of enzymes likely to require regu-
lation during changes in environmental conditions. The second
stage characterizes the cellular effect of probing experimentally
measured PTM sites in the subset of enzymes through genome-
editing techniques. The third stage utilizes all-atom MD simu-
lations to understand the detailed mechanisms of the specific
PTMs that are demonstrated to have an effect on cellular fitness.
We apply this framework to study PTMs in Escherichia coli and
their influence across multiple nutrient conditions. We demon-
strate that this strategy is capable of clarifying complex changes
in metabolic network usage, identifying key regulatory nodes,
and elucidating the complex interplay between environment and
the PTM state of the metabolic proteome.

Results and Discussion
Stage One: Identify Regulatory Nodes in the E. coli Metabolic
Network. Stage one of the workflow (Fig. 1) identifies key en-
zymes in E. coli metabolism that require regulation (Fig. 2A).
Since PTMs are enriched in metabolic pathways and may regu-
late them (Fig. 2B and SI Appendix, Fig. S1), this stage further
demonstrates that PTMs are preferentially localized to these
enzymes. First, using constraint-based modeling (17–19), we
predict metabolic pathway usage, which estimates the steady-
state flux through all metabolic pathways in a cell (19) (SI Ap-
pendix, Fig. S2). Second, we extend this framework to predict
which enzymes require regulation in a sudden nutritional shift
(to ensure optimal cell fitness). To do this, we use a method
called Regulated Metabolic Branch Analysis (RuMBA) (SI Ap-
pendix, Fig. S3) to predict which metabolic enzymes, if regulated,
are positioned to rapidly reroute flux to more favorable path-
ways. Lastly, we compare our findings with published lists (20–
23) of metabolic enzymes with measured PTMs. With this
framework, thousands of metabolic enzymes can be systemati-
cally assessed across thousands of nutrient shifts to understand
which enzymes are likely modified during environmental shifts.
Using the above schema, we applied RuMBA to study E. coli’s

canonical diauxic shift from glucose to acetate metabolism. The
metabolic network is used to simulate the metabolic flux through
all pathways, thus enabling the computation of changes in flux
splits at each metabolite node when shifting between two nutrient
conditions (Fig. 2A). Here, we tested whether the flux through
metabolic branch points changed significantly upon nutrient shift
from one reaction to another reactions in the same branch point
(SI Appendix, Fig. S3 B–D). Our model predicted a significant

diversion of flux at the branch point between the TCA cycle and
the glyoxylate shunt (7, 24) during the shift from glucose to ace-
tate metabolism, suggesting that this branch point is likely regu-
lated (P << 1 × 10−5; SI Appendix, Fig. S3E and Dataset S1).
Consistent with these predictions, isocitrate dehydrogenase is used
predominantly during glucose metabolism, while growth on ace-
tate uses isocitrate lyase to support anaplerosis. To this end,
RuMBA-predicted enzymes are likely to be situated at key points
in the network for regulation to divert flux to key pathways.
We compared our predictions for the glucose–acetate diauxie

to several experimentally validated cases to show that RuMBA
accurately identifies key regulatory nodes in metabolism. First,
the predicted regulators significantly overlap with enzymes that
are known to be regulated by small molecules (using 1,219 ex-
perimentally validated cases; SI Appendix, Figs. S3F and S5 and
Dataset S2), especially for enzymes that are regulated allosteri-
cally by metabolites (SI Appendix, Fig. S3G). Second, analysis of
transcriptomics data indicates that regulation of these proteins is
eventually reinforced through transcriptional regulation (P = 3 ×
10−10; SI Appendix, Fig. S6). In other words, proteins are regulated
transiently through small molecules and may be sustained on longer
time scales by transcriptional changes. Third, we find that PTMs
[including serine, threonine, or tyrosine phosphorylation, lysine
acetylation, or succinylation sites (20–23)] are enriched among
proteins that are predicted to require regulation (SI Appendix, Fig.
S4). Furthermore, several of these PTMs significantly change in
abundance between glucose and acetate media (Dataset S17) (16).
We further investigated changes at metabolic branch points

under diverse changes in environmental conditions, beyond the
glucose–acetate diauxie. We simulated changes in metabolism
for 15,051 shifts between pairs of 174 different media (Dataset
S4) and predicted regulation in each nutritional change. Across
all conditions, known PTMs are enriched among the regulated
set of enzymes in 92% of the simulated nutrient shifts [hyper-
geometric test; false discovery rate (FDR) < 0.01; SI Appendix,
Fig. S4C]. We found that proteins with experimentally measured
PTMs required regulation more than those without PTMs
(Wilcoxon P = 6 × 10−6). RuMBA-predicted enzymes were
clustered by nutrient shift (Fig. 2C), and our findings indicate
that far fewer enzymes have experimentally measured PTM sites
in clusters of enzymes that require occasional regulation (9%) or
enzymes not requiring regulation (3%) (Fig. 2D). In contrast,
43% of the enzymes in the most highly regulated cluster had
PTMs, which is enriched in glycolytic enzymes and the glyoxylate
shunt (Fig. 2E and SI Appendix, Fig. S7). Thus, in E. coli, PTMs
are effectively localized to enzymes that have the greatest po-
tential to regulate metabolism under different growth conditions.

Stage Two: Characterize the Cellular Impact of Probing PTM Sites.We
hypothesize that regulation of the RuMBA-predicted enzymes
(from stage one) is critical to rapidly force flux from one branch
to another immediately following a change in nutrient condition.
To test this hypothesis, we used genome editing to study the
in vivo effect of mimicking modification as well as disabling the
cell’s ability to modify specific PTM sites within this subset of
enzymes during nutrient shifts. The main understanding gained
from this stage is identification of PTM sites (among the subset
of RuMBA-predicted enzymes), that elicit changes in cellular
fitness under specific nutrient shifts.
We assessed global changes in cell fitness after using multi-

plexed automated genome engineering (MAGE) (25) to perturb
PTM status in a pooled screen approach (Fig. 3A) (26). PTM sites
were selected from the RuMBA-predicted enzymes (268 modifi-
cations to 134 known PTM sites in 61 proteins, covering all pro-
teins with PTMs and known protein structures at the time of the
experimental design) and studied across five media conditions at
multiple time points using MAGE-Sequencing (MAGE-Seq) (27)
(Datasets S5 and S6). Codons were changed to (i) mimic a PTM
(i.e., replacing S/T/Y residues with glutamate to mimic the nega-
tive charge of phosphorylation or asparagine to mimic the lack of
charge in acetylation; referred to as “PTM-mimic”); or (ii) remove

Fig. 1. A workflow for bridging systems and molecular science with mul-
tiomics data, genome-scale models of E. coli metabolism, and MD simula-
tions. Our workflow involves a staging of computational and experimental
methods: (1) computational genome-scale modeling to predict which en-
zymes require regulation across specific nutrient shifts; (2) genome editing
through MAGE to probe the effect of changing PTM sites on cellular fitness;
and (3) MD and in vitro enzyme assays to probe the effect of modifying a
residue that is a known PTM site on protein configuration.
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the propensity for PTM addition (i.e., replacing S/T/Y with aspar-
agine which cannot be phosphorylated to mimic the size and polarity
of a S/T/Y or lysine with arginine, which cannot be acetylated but
retains the positive charge; referred to as “PTM-null”).
Targeted mutations impacted organism fitness under specific

media conditions, as exemplified by the PTM-null mutation at
position K54 of serine hydroxymethyltransferase (glyA). For
example, this mutation doubled the growth rate on acetate M9
minimal medium, but did not have a considerable impact on
growth on glucose M9 minimal medium (Fig. 3B). However,
following glucose depletion, the K54R mutant showed an in-
creased growth rate during the brief shift to residual fermenta-
tion products (SI Appendix, Fig. S8).
Computational analysis of the MAGE data indicate that

modification of 88% of the sites significantly increased or de-
creased in fitness in at least one condition (Fig. 3D and SI Ap-
pendix, Fig. S9 A and C). Furthermore, 35 genes had PTM sites
showing significantly different impacts between PTM-mimic and
-null variants in at least one condition (FDR < 0.05; Fig. 3C).
This suggests that many PTM states are preferred in specific
nutrient conditions.
An analysis of all screen data points to global patterns: PTMs

influence cellular fitness by regulating critical proteins at key
positions in dynamic nutrient shifts. We quantified the properties
of the modified proteins that contributed the most to fitness
changes using a generalized estimating equation (GEE) (28).
First, our analysis showed that the enzymes that are critical for
survival are prime targets for regulation to gain fitness advan-
tages (SI Appendix, Fig. S9B). Second, modifications impacting
fitness often occur at positions in proteins that impact enzyme
activity (e.g., salt bridge residues or near active site residues,
P << 1 × 10−10 and P = 9 × 10−7, respectively). Lastly, mutations
more significantly impact cellular fitness when nutrients oscillate

(e.g., shifting between glucose to acetate minimal medium and
back to glucose; P = 3 × 10−3). Thus, PTMs are positioned on the
enzymes that directly regulate growth, and when proteins are
forced to remain in a single PTM state (thereby preventing
transient control at these sites), they more significantly impact
cellular fitness.

Stage Three: Elucidate Control Mechanisms of PTMs. Atomistic
simulations provide a contextual basis for the analysis of how
PTMs modulate protein structure and function. To unravel the
specific mechanisms by which the PTMs regulate the proteins,
we studied three E. coli proteins. Classical MD simulations and
in vitro biochemical assays showed that the PTMs (i) modulate
interactions at protein interfaces in serine hydroxymethyl-
transferase (GlyA), (ii) manipulate binding site conformations in
transaldolase, and (iii) control catalytic residues in enolase.
First, we found that PTMs can influence enzyme activity by

modulating protein interaction. Specifically, MD simulations,
in vitro enzymatic assays, and MAGE for GlyA all suggest that
acetylation at the dimer interface disrupts activity, thus pro-
viding a transient control mechanism (Fig. 4A and SI Appendix,
Fig. S10). For GlyA, which is regulated in 12% of the 15,051
simulated substrate shifts, acetylation takes place at positions
K54, K250, and K354, near the dimer interface, which also form
part of the substrate binding domain (Fig. 4A). Analysis of a
100-ns MD trajectory suggests that acetylation of K250 and
K354 impacts the structure of the N-terminal domain of mo-
nomeric GlyA [average root mean squared deviation (rmsd) of
3.5 Å relative to the crystallographic structure; SI Appendix,
Fig. S11] in addition to cofactor binding (tetrahydrofolate).
Site-directed mutation of these residues to mimic acetylation
ultimately influenced in vitro enzymatic activity (Fig. 4B) as
well as organism fitness for the PTM-mimic in vivo (Fig. 4C).
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35% when considering only expressed genes). (C)
Clustering analysis of all enzymes predicted to re-
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Similarly, acetylation of K54 was disruptive to cellular fitness,
as it disrupted a salt bridge interaction with E36 of the neigh-
boring subunit, increasing the intermolecular interaction by
2–4 Å, relative to WT protein (Fig. 4A and SI Appendix, Fig.
S12). These findings are consistent with in vitro assays that mimic
the loss of this interaction (Fig. 4B), which demonstrate nearly a
complete loss in enzymatic activity. In vivo, the K54N PTM-
mimic modification significantly decreased fitness, while the
K54R mutant was preferred (Fig. 4C). This response was
strongest for growth on gluconeogenic substrates, in which the
PTM could block their catabolism when glycolytic substrates
were available. Furthermore, modifying the PTM state was es-
pecially disruptive to the cell when nutrient condition oscillated
between acetate and glucose (Fig. 4D).
Second, our findings suggest that certain PTMs act as precise,

yet transient, mechanochemical “switches” for tuning enzyme
activity by impacting active site accessibility. For transaldolase,
which is regulated in 22% of the 15,051 simulated substrate
shifts, many experimentally detected PTMs localize to a shallow
channel where metabolites pass to enter/exit the active site (SI
Appendix, Fig. S10). The conformation of this channel is known
to impact substrate binding and catalysis (29). We studied pro-
tein conformations of wild-type (WT) and five modified trans-
aldolase proteins during a 1.05-μs MD trajectory (SI Appendix,
Fig. S13) and found that PTMs on certain residues influence the
accessibility of the channel, namely, S226 and K308. Phosphor-
ylation of S226 promoted an opening of the channel, whereas
acetylation strongly induced its closing. In vitro, modification of
S226 reduced enzyme activity by 40% (Fig. 4B), yet the MAGE
PTM-mimic state was preferred in specific conditions compared
with the PTM-null state (Fig. 4C), presumably to maintain the

opening of the substrate channel. Forcing the mimicking of
acetylation at K308 significantly decreased organism fitness (Fig.
4C), by disrupting the accessibility of the binding pocket, which is
upheld by a salt bridge between D305 and S37. Thus, for trans-
aldolase, PTMs seem to be used to maintain binding-pocket ac-
cessibility, and this influences cellular fitness in specific conditions.
Third, modification of catalytic residues directly impact protein

reactivity, as found for enolase. Enolase was a branch-point en-
zyme in the metabolic network that was predicted to be regulated
in 48% of the 15,051 substrate shifts. An analysis of the protein
structure showed that PTMs on active-site residues S372 and
K341 destabilized the binding of two Mg2+ ions, which are re-
quired for catalysis (SI Appendix, Figs. S10 and S14). We further
performed in vitro enzyme assays to study the effect of modifying
K341 and S372 on enzyme activity (Fig. 4B and SI Appendix, Fig.
S15). Consistent with a recent study (30), mutating K341 to as-
paragine or glutamine completely arrested catalysis. Mutating
S372 to aspartate also completely arrested activity, as the phos-
phorylation mimic introduced a negative charge near Mg2+, while
S372N only partially decreased activity, thus showing that the
charge of the PTM is more responsible for switching the enzyme
off. These changes also caused significant impacts on organism
fitness in vivo across certain nutrient environments (Fig. 4C).
Specifically, the PTM-null state was preferred for gluconeogenic
substrates (Fig. 4D). These findings suggest that the direct mod-
ulation of catalytic residues provides a precise mechanism to
regulate a highly sensitive branch point, such as for enolase.

Conclusions
From a systems perspective, determining the molecular basis of a
phenotype requires a complete delineation of the cell parts and
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pathway structure, and an understanding of how the parts and
pathways interact with the cell environment. Our combined
computational and experimental approach provides a means to
reliably navigate a set of experimentally determined PTMs and
probe promising functional roles considering specific environ-
mental perturbations. These analyses open vistas in systems bi-
ology, empowering the systematization of biochemistry and
shaping the study of PTMs. Indeed, approaches used here could
be applied to study PTMs in other organisms (31). Perhaps most
important is the approach taken to understand how a modifi-
cation at specific sites in individual proteins can impact bi-
ological fitness, both on the molecular and physiological levels.
Ultimately, in this work, we demonstrated how PTMs fit into

the regulation of E. coli metabolism and cell fitness. Specifically,
our work suggests that many PTMs are poised to help cells re-
spond to familiar extrinsic nutrient fluctuations and intrinsic
expression noise as the nutrient environment fluctuates. When
PTMs are deployed to suppress pathways that are suboptimal
following an acute stress or nutritional change, it demands less
energy and allows for an immediate response, compared with
irreversible protein degradation or transcriptional and trans-
lational control mechanisms (13). Our work also clearly shows,
from multiple angles, that PTMs can directly impact cellular
fitness. Furthermore, we elucidated examples of how regulation
of specific enzymes achieves this result. Indeed, by carrying out
three stages of the workflow, we find that many PTMs are lo-
cated at model-predicted branch points in the metabolic net-
work, where they could control cell physiology. Furthermore,
many PTMs occur at functionally relevant positions in the es-
sential proteins, exactly where the most impactful regulation
could be elicited (e.g., salt bridges and active sites), as we found
through the analyses of enolase, transaldolase, and serine
hydroxymethyltransferase (and many other proteins; SI Appen-
dix, Figs. S3 and S4). Perhaps most importantly, we found that
the modification of PTM states impact cellular fitness most when
the primary nutrients change, which reinforces the notion that
PTMs help the cells to adapt as nutrient conditions change.

Methods
PTMs and Data on Metabolic Regulation. Lists of metabolic proteins with PTMs
were obtained from proteomic studies on serine, threonine, or tyrosine
phosphorylation (20), lysine acetylation (21, 22), or lysine succinylation (23).
All reported occurrences of noncovalent metabolite-mediated metabolic
regulation were obtained from EcoCyc (32) and are reported in Dataset S2.

Constraint-Based Modeling Analysis. RuMBA computes the relative change in
flux splits, based onmodel-simulated flux by usingMarkov chainMonte Carlo
(MCMC) sampling. Simulations were conducted by using the COBRA Toolbox
(33, 34). MCMC sampling of the metabolic flux provided the range and
distribution of feasible steady-state fluxes for each reaction (35). In RuMBA,
for each metabolite, all incoming and outgoing fluxes for each MCMC flux
vector were summed. For each ith reaction, the fraction of total flux through
the metabolite, vmet, was computed as follows:

fi =
vt

vmet
,

where vi is the flux through reaction i and fi is the fraction of all flux passing
through the metabolite of interest that is passing through reaction i. This is
done for each feasible flux vector, to obtain a distribution of fi fractions for
each reaction for the two growth conditions of interest. A P value is com-
puted that measures the overlap of the fi values for that reaction under the
given growth condition—that is, the probability of finding an fi value in the
first growth condition that is equal to or more extreme than an fi value for
the same reaction in the second growth condition. The P values are cor-
rected for multiple hypotheses (FDR < 0.01). Since this method focuses on
flux splits, rather than absolute flux, moderate variations in metabolite
uptake rates have little effect on our predictions (SI Appendix, Fig. S16). See
SI Appendix for more details on the method and its validation.

Oligonucleotide Design for MAGE. A panel of phosphorylation and acetylation
sites were identified from previous studies (20–22), and codons for the phos-
phorylation sites on serine and threonine or lysine acetylation were changed.
Serine and threonine were changed to glutamate to mimic the phosphoryla-
tion and an asparagine to mimic the unphosphorylated residue. Lysine was
converted to glutamine to mimic the acetylated state and arginine to inhibit
acetylation. All 90-mer MAGE oligonucleotide sequences are provided for the
subset of genes studied (Datasets S5 and S6). MAGE oligonucleotides were
synthesized by Integrated DNA Technologies with standard purification.

MAGE. MAGE was conducted as described (25). Four rounds of MAGE were
conducted. Multiplex allele-specific colony PCR was used as described (36) to
verify mutations and to identify specific mutants for phenotyping. See SI
Appendix for further details.

Screen for PTM Mutation Fitness. We tested multiple media conditions (e.g.,
LB, Azure-defined rich + glucose, Glucose M9, Acetate M9, and Inosine M9)
at 30 °C as well as for two oscillating conditions (Azure and glucose M9 or
glucose and acetate M9). The screens were sampled at two to four time
points (Dataset S12), and allele frequencies were quantified by amplifying
the genes with PTM sites from the genomic DNA and sequencing the
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amplicons with next-generation sequencing. To obtain the final pool with all
MAGE mutants, MAGE was conducted in five batches, each with ∼46 dif-
ferent MAGE oligos. MAGE oligos were grouped to ensure that no two
oligos targeted within 100 base pairs of each other, to avoid competition
between oligos in any one pool. The batches of mutants were combined and
subjected to phenotypic selections.

Measurements of the allele frequency were made at 3 h after electro-
poration and pooling and overnight storage at 4 °C. Cells pellets were
subsequently washed with the medium used in the screen. Cells were
maintained at 30 °C at exponential growth by serial dilution at regular in-
tervals (about every three doublings; see Dataset S12 for values). Aliquots
were saved at each dilution, and time points were selected for subsequent
sequencing and analysis of allele frequencies at each PTM site.

MD Simulations. Classical MD simulations were performed starting from
protein crystal structures, solvated with explicit solvent. Each structure was
manually changed to study individual PTMs of interest. Parameters for
phosphorylated amino acids were taken from previous studies (37). For each
system, graphics processing unit-enabled PMEMD MD (38) was performed,
by using the AMBER (39) 99sb force field (40, 41) for 50–120 ns per protein
state (i.e., substrate-bound vs. substrate-free in WT and modified variant
proteins). For more details, see SI Appendix.

Enzymatic Assays. Enolase activity was assayed bymeasuring the conversion of 2-
phospho-D-glycerate (2-PGE) to phosphoenolpyruvate (PEP) at 25 °C as described
(42) with modifications. The reaction mixture contained 1 mM 2-PGE in reaction
buffer (100 mM Hepes buffer, pH 8.5, 7.7 mM KCl, and 10 mM MgSO4,
prewarmed to 25 °C), and enolase was added to initiate the reaction. The

reaction was monitored spectrophotometrically by measuring absorbance at
240 nm for the production of PEP at 30-s intervals for 10 min.

For transaldolase, the reverse reaction catalyzed by transaldolase
was tested at room temperature as described (43) with some modifications.
The reaction mixture contained 5 mM D-fructose-6-phosphate, 0.2 mM
erythrose-4-phosphate, 0.1 mM NADH, and 10 μg of α−glycerolphosphate
dehydrogenase-triosephosphate isomerase (Sigma) in reaction buffer (40 mM
triethanolamine, pH 7.6, and 5 mM EDTA), and transaldolase was added to
initiate the reaction. The reaction was monitored spectrophotometrically by
measuring absorbance at 340 nm at 30-s intervals for 10 min.

Serine hydroxymethyltransferase activity of THF-dependent cleavage was
measured as described (44) with some modifications. The reaction mixture in a
final volume of 75 μL consisted of 0.3 mM pyridoxal phosphate, 40 mM mer-
captoethanol, 15 mM serine, and serine hydroxymethyltransferase in reaction
buffer (10 mM potassium phosphate, pH 7.3, and 0.5 mM EDTA). After a 5-min
incubation at 37 °C, 1 mM THF was added to initiate the reaction. The reaction
was stopped after 2 min by the addition of 100 μL of pH 9.5 carbonate buffer.
Twenty microliters of 2 mM NADP+ and enough methylene tetrahydrofolate
dehydrogenase were then added to carry out the auxiliary reaction, and the
increase in absorbance at 340 nm was followed to completion.
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