DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron studies of gauge field and charge in Ih heavy-water ice

Abstract

The distinctive character of water ice results from the partially disordered combination of covalent and hydrogen bonds in the network of hydrogen and oxygen atoms. The nontrivial hydrogen correlations we report in diffuse neutron scattering are analytically fit via a description of this state as a topological system exhibiting an emergent gauge field. This enables the density of correlation-terminating point defects to be decided as one defect per 500 oxygen sites at 30 K. Application of an analytical model of ice paves the way towards a detailed understanding of this ubiquitous solid.

Authors:
 [1];  [2];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8]
  1. Xavier Univ., Cincinnati, OH (United States)
  2. Helmholtz-Zentrum Berlin, Berlin (Germany)
  3. Scienion AG, Berlin (Germany)
  4. Technische Universität Berlin, Berlin (Germany)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Google Inc., Zurich (Switzerland)
  7. Princeton Univ., NJ (United States)
  8. Max Planck Society, Dresden (Germany). Max Planck Inst. for the Physics of Complex Systems
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1515645
Alternate Identifier(s):
OSTI ID: 1514736
Grant/Contract Number:  
AC05-00OR22725; 9566
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 99; Journal Issue: 17; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Morris, D. J. P., Siemensmeyer, K., Hoffmann, J. -U., Klemke, B., Glavatskyi, I., Seiffert, K., Tennant, D. A., Isakov, S. V., Sondhi, S. L., and Moessner, R. Neutron studies of gauge field and charge in Ih heavy-water ice. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.99.174111.
Morris, D. J. P., Siemensmeyer, K., Hoffmann, J. -U., Klemke, B., Glavatskyi, I., Seiffert, K., Tennant, D. A., Isakov, S. V., Sondhi, S. L., & Moessner, R. Neutron studies of gauge field and charge in Ih heavy-water ice. United States. https://doi.org/10.1103/PhysRevB.99.174111
Morris, D. J. P., Siemensmeyer, K., Hoffmann, J. -U., Klemke, B., Glavatskyi, I., Seiffert, K., Tennant, D. A., Isakov, S. V., Sondhi, S. L., and Moessner, R. Mon . "Neutron studies of gauge field and charge in Ih heavy-water ice". United States. https://doi.org/10.1103/PhysRevB.99.174111. https://www.osti.gov/servlets/purl/1515645.
@article{osti_1515645,
title = {Neutron studies of gauge field and charge in Ih heavy-water ice},
author = {Morris, D. J. P. and Siemensmeyer, K. and Hoffmann, J. -U. and Klemke, B. and Glavatskyi, I. and Seiffert, K. and Tennant, D. A. and Isakov, S. V. and Sondhi, S. L. and Moessner, R.},
abstractNote = {The distinctive character of water ice results from the partially disordered combination of covalent and hydrogen bonds in the network of hydrogen and oxygen atoms. The nontrivial hydrogen correlations we report in diffuse neutron scattering are analytically fit via a description of this state as a topological system exhibiting an emergent gauge field. This enables the density of correlation-terminating point defects to be decided as one defect per 500 oxygen sites at 30 K. Application of an analytical model of ice paves the way towards a detailed understanding of this ubiquitous solid.},
doi = {10.1103/PhysRevB.99.174111},
journal = {Physical Review B},
number = 17,
volume = 99,
place = {United States},
year = {Mon May 20 00:00:00 EDT 2019},
month = {Mon May 20 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Analytical theory for proton correlations in common-water ice I h
journal, June 2015


A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions
journal, August 1933

  • Bernal, J. D.; Fowler, R. H.
  • The Journal of Chemical Physics, Vol. 1, Issue 8
  • DOI: 10.1063/1.1749327

The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement
journal, December 1935

  • Pauling, Linus
  • Journal of the American Chemical Society, Vol. 57, Issue 12
  • DOI: 10.1021/ja01315a102

Elastic diffuse neutron scattering due to D-D correlation functions seen in Ih ice
journal, August 1980


Disorder in ice Ih
journal, January 1995


Diffuse scattering in Ih ice
journal, June 2014


The 3-dimensional eight vertex model and the proton-proton correlation functions in ice
journal, May 1972


Theory of the dielectric constant of ice
journal, November 1979


Correlations in ice-rule ferroelectrics
journal, June 1980


Polarization fluctuations in ferroelectric models
journal, January 1981


Frustration model of proton disorder in ice
journal, October 1984


“Symmetrical” phase and collective excitations in the proton system of ice
journal, June 1999

  • Ryzhkin, I. A.
  • Journal of Experimental and Theoretical Physics, Vol. 88, Issue 6
  • DOI: 10.1134/1.558912

Ice: A strongly correlated proton system
journal, July 2006


The “Coulomb Phase” in Frustrated Systems
journal, August 2010


Spin Ice, Fractionalization, and Topological Order
journal, March 2012


Neutron scattering lengths and cross sections
journal, January 1992


A Technique for the Growth of high Quality Single Crystals of ice
journal, March 1987

  • Ohtomo, M.; Ahmad, S.; Whitworth, R. W.
  • Le Journal de Physique Colloques, Vol. 48, Issue C1
  • DOI: 10.1051/jphyscol:1987181

E2: The Flat-Cone Diffractometer at BER II
journal, January 2018

  • Hoffmann, Jens-Uwe; Reehuis, Manfred
  • Journal of large-scale research facilities JLSRF, Vol. 4
  • DOI: 10.17815/jlsrf-4-110

Unit cells for the simulation of hexagonal ice
journal, January 1997

  • Hayward, J. A.; Reimers, J. R.
  • The Journal of Chemical Physics, Vol. 106, Issue 4
  • DOI: 10.1063/1.473300

Structure and Properties of Ice
journal, April 1952


Properties and lattice imfections of ice crystals and the behaviour of H2O-HF solid solutions
journal, December 1962

  • Gränicher, H.
  • Physik der Kondensierten Materie, Vol. 1, Issue 1
  • DOI: 10.1007/BF02422320

Mechanistic study of proton transfer and H∕D exchange in ice films at low temperatures (100–140K)
journal, August 2007

  • Lee, Chang-Woo; Lee, Poong-Ryul; Kim, Young-Kwang
  • The Journal of Chemical Physics, Vol. 127, Issue 8
  • DOI: 10.1063/1.2759917

Multiple-trapping model of dielectric relaxation of the ice I h
journal, November 2017

  • Khamzin, A. A.; Nigmatullin, R. R.
  • The Journal of Chemical Physics, Vol. 147, Issue 20
  • DOI: 10.1063/1.5006252

Colloquium : Understanding ion motion in disordered solids from impedance spectroscopy scaling
journal, July 2009


Dielectric Anisotropy in Ice Ih
journal, June 1978

  • Kawada, Syuji
  • Journal of the Physical Society of Japan, Vol. 44, Issue 6
  • DOI: 10.1143/JPSJ.44.1881

The crystallography of correlated disorder
journal, May 2015


Neutron study of the topological flux model of hydrogen ions in water ice
dataset, January 2018

  • Hoffmann, J. -U.; Siemensmeyer, K.; Isakov, S.
  • HZB Data Service
  • DOI: 10.5442/ND000001

Theory of the dielectric constant of ice
journal, October 1981


Spin Ice, Fractionalization and Topological Order
text, January 2011


Analytical theory for proton correlations in common water ice $I_h$
text, January 2015