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Abstract

In this paper we report on an e↵ort to determine an optimal parameter set for the

complete event fission model FREYA to reproduce spontaneous fission of 252Cf(sf),

244Cm(sf), 238Pu(sf), 240Pu(sf), 242Pu(sf), and 238U(sf). Earlier studies have

partially optimized the event-by-event fission model FREYA with respect to the

available experimental data using brute force computational techniques. We

have confirmed and expanded these results using a least-squares minimization

based on the simulated annealing approach. We have also developed a more

complete statistical picture of this optimization, consisting of a full correlation

matrix for the parameters utilized by FREYA. The newly improved parameter

values themselves, along with this correlation matrix, have led to a more well-

developed physical picture of the fission process.

1. Introduction

Though nuclear fission has influenced society in significant ways, the fis-

sion process itself is still not understood in great detail. Nevertheless, we can

produce a complete fully-correlated physically-consistent description of fission.

The Fission Reaction Event Yield Algorithm (FREYA) fission model is designed

to serve this purpose in a physically-complete fashion with a relatively mod-

est computational footprint. While our main focus here is on 252Cf(sf), we
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also present optimized parameters for all spontaneously fissioning nuclei in the

event-by-event simulation code FREYA [1, 4, 2, 3, 5, 6]. FREYA generates samples

of complete fission events, including the full kinematic information for the two

product nuclei, as well as the emitted neutrons and photons. It was designed to

quickly generate large numbers of events. FREYA is also a published code [5, 6],

In this work we concern ourselves with improving the FREYA input parameters

by global optimization and considering the physical implications of the result-

ing parameter values. We also discuss the areas in which experimental data is

lacking for this type of comparison.

The events generated by FREYA depend on five physics-based parameters.

For a given choice of these five parameters, the results can be compared to

existing experimental data and evaluations in order to determine how e↵ective

each choice is at describing all the data. This work was carried out using

multiple di↵erent numerical optimization techniques in order to determine the

most e�cient and e↵ective methodology. We make a full statistical analysis,

including variances and covariances. In this paper we find the best possible set

of the input parameters for describing all the spontaneous fission data for each

isotope.

In Sec. 2 we describe the parameters we optimize in FREYA. Sec. 3 discusses

the numerical methods used to perform the optimization, while Sec. 4 identi-

fies the data employed in the fits. Sections 5 and 6 provide the results and

their interpretation, as well as a comparison between the resulting parameter

values to those previously used. We compare results to the data for specific

252Cf(sf) observables in Sec. 7. Comparisons to other isotopes can be found in

the Appendix.

2. FREYA parameter description

In this section we briefly discuss the process of nuclear fission as implemented

in FREYA. We also identify and provide a physical interpretation of the five

parameters required by FREYA.
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The fission process begins when a specified initial compound nucleus splits

into two fragment nuclei, typically one light and one heavy, which we denote by

L and H respectively for each fragment pair. The corresponding Q-value is given

by Q = M
0

c2 �MLc2 �MHc2 for spontaneous fission. The fragment yields as a

function of fragment mass and the total kinetic energy of the fragments, TKE,

as a function of heavy fragment mass, AH , are sampled from data. From the

fission Q value and the sampled TKE we determine the total excitation energy at

scission, E⇤
sc

, by energy conservation. The excitation energy E⇤
sc

is available for

both statistical, E
stat

, and rotational, E
rot

, excitation of the fragments. These

two quantities are related by:

E⇤
sc

= Q � TKE = E
stat

+ E
rot

. (1)

The level density parameter1 a ⇡ A
0

/e
0

[4], for some constant e
0

, determines

a “scission temperature” T
sc

from the relation:

E⇤
sc

= aT 2

sc

. (2)

This e
0

is the first parameter required by FREYA, and is usually around 10/MeV

[6]. Note that, while Eq. (2) relates a to the scission temperature, the level

density parameter a is also employed for all neutron emission during the fission

process.

In addition to the mean angular momenta of the fragment given by the

overall rigid rotation around the scission axis, there are also fluctuations around

this value attributed to the wriggling and bending modes [9] that contribute to

E
rot

. The relative degree of these fluctuations is given by

TS = cST
sc

. (3)

The ratio of the fluctuation temperature TS to the scission temperature T
sc

, cS ,

is our second parameter. It is clear that this must be non-zero. If it were zero,

1
The relation given here is an approximation valid for high energies and negligible shell

corrections. In FREYA a back-shifted Fermi gas model is used. See Ref. [2] for details.
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there would be no fluctuations and the only angular momentum present in the

fragments would be that dictated by the rigid rotation before scission. In the

case of spontaneous fission, this would mean that the fragments have no angular

momentum, which is not the case. The default value used in the most recently

published version of FREYA is cS = 0.87 [6, 7]. See [9] for more details on the

addition of angular momentum to FREYA.

The statistical excitation energy, E
stat

, is initially partitioned as E
stat

=

É⇤
L + É⇤

H where the ⇤ indicates that the statistical excitation is initially parti-

tioned according to the level density parameters. This would only be completely

accurate if the fragments were in mutual thermal equilibrium. However, since

we know that the light fragment emits more neutrons on average, we modify

the partition via the third parameter, x:

E
⇤
L = xÉ⇤

L , E
⇤
H = E

stat

� E
⇤
L , (4)

assumed to be greater than 1. A value around 1.1� 1.3 is typically found [7, 8].

As noted in Eq. (2), the average fragment excitation energy is proportional

to the temperature, i.e. Ei
⇤ / T 2

i . The variance of this excitation is given by:

�2

Ei
= cEi

⇤
Ti . (5)

Therefore we have an energy fluctuation, written �E⇤
i , on both the heavy and

light fragments. This fluctuation is sampled from a normal distribution of vari-

ance equal to 2cEi
⇤
Ti. In particular, the excitation energy of each fragment

is adjusted to be E⇤
i = Ei

⇤
+ �E⇤

i . Therefore we can understand the factor c,

our fourth parameter, as controlling the truncation of the normal distribution

at the maximum available excitation. It primarily a↵ects the neutron multiplic-

ity distribution and was assumed to take a value c ⇠ 1. We maintain energy

conservation by

TKE = TKE � �E⇤
L � �E⇤

H . (6)

Finally, to ensure reproduction of the measured average neutron multiplicity ⌫,

we allow the value of the average total kinetic energy to shift by a small amount
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e0 (/MeV) x cS c dTKE (MeV)

7 - 12 1.0 - 1.5 0.5 - 1.5 1 - 3 �5 - 5

Table 1: Ranges of parameters considered in the optimization.

dTKE. The measured data have often unquantified systematic uncertainties or,

in some cases, low statistics.

The ranges considered for these parameters can be found in Table 1. While

the range for c is listed as 1�3, for some isotopes we allow this range to expand.

Since this parameter controls the width of the neutron multiplicity distribution,

for isotopes which are known to have a comparatively narrow distribution, we

allow the parameter to vary below 1 to 0.8. In addition, for isotopes with a

comparatively wide distribution relative to their average multiplicity we allow

c to be as large as 4.

We note that there are two detector-based photon-related parameters in

FREYA, g
min

, the minimum detected photon energy, and t
max

, the length of the

time measurement. Because these are unique to each measurement, they are

not counted as tunable parameters. They do however have some e↵ect on the

photon multiplicity and energy per photon [11]. The fits use the values of g
min

and t
max

appropriate for the data included in the fits.

3. Computational methods

For each set of five parameters, we generate sets of 1, 000, 000 events. The

output from the generated events contains the full kinematic information for the

fragments and the emitted neutrons and photons. We use this kinematic infor-

mation to calculate physical observable which are then compared to measured

data. In this study, the quantities we extracted included the average neutron

multiplicity, ⌫; the second and third moments of the neutron multiplicity, ⌫
2

and ⌫
3

respectively; the neutron multiplicity distribution, P (⌫); the average

neutron multiplicity as a function of the total kinetic energy, ⌫(TKE), and as

a function of fragment mass, ⌫(A); the neutron energy spectrum, N(E); the

average photon multiplicity, N� ; the photon multiplicity distribution, P (N�);
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Figure 1: (Color online) (a) Contour plot of �

2
relative to various parameter values for

252
Cf(sf) for the full range of tested parameters. (b) Contour zoomed in to focus around

optimized parameter values.

and the average energy per photon ✏� .

The moments of the multiplicity distribution are defined as

⌫n =
X

n

⌫!

(⌫ � n)!
P (⌫) (7)

where

⌫
1

= ⌫ = h⌫i ,

⌫
2

= h⌫ (⌫ � 1)i ,

⌫
3

= h⌫ (⌫ � 1) (⌫ � 2)i . (8)

These moments numerically encapsulate the shape of the neutron multiplicity

distribution. After calculating these observables from the FREYA output, they

are compared with available experimental data and evaluations. Unfortunately,

not all of these observables are available for many of the isotopes of interest, as
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we discuss later. More information on the sources and quality of these data can

be found in Sec. 4.

The FREYA output is compared to the data, and for each observable the

reduced �2, �2

0

is calculated as

�2

O =
1

n � 5

nX

i=1

(Oi � Ei)
2

�2

i

(9)

where i = 1, . . . , n runs over the bins of the distribution; Oi is the value of the

observable returned by FREYA for the given bin; Ei is the experimental result;

and �i is the experimental uncertainty on Ei. The reduced �2

0

for the observable

is found by dividing the sum over all bins by the number of degrees of freedom,

n � 5, for the five physics-based parameters we are fitting. For single valued

observables such as ⌫, we simply take �2

O = (O � E)2 /�2.

The total �2 is the sum over all observables where data are available,

�2 =
X

O

�2

O . (10)

This total �2 is treated as the return value of an objective function. In Fig. 1

we plot the following: first we take the sum of the reduced �2 values for a

linear combinations of the parameters. Then we find the lowest such value, and

plot the ratio of all of the values to this value. These plots show us merely

one particular two dimensional projection of the five-dimensional parameter

space. The particular linear combination of parameters was chosen by-eye to

best illustrate the nature of the parameter space we are working in.

Preliminary work in Ref. [7] used a grid-search method where every potential

combination of parameters was tested. However, in a five-dimensional space

with a reasonably fine mesh, the grid search technique is unwieldy and very

computationally intensive. We have therefore also used alternative methods

and confirmed that our alternate methodology agreed with the earlier used grid

search approach used earlier.

Fig. 1 shows that the objective function displays many local minima which

are neither global minima, nor physically relevant. Therefore, we cannot employ
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a simple algorithm, such as gradient descent, because it can easily fall into such

local minima. We have instead employed the so-called simulated annealing

method [12]. The motivation for such an algorithm is to inject a certain amount

of randomness into the process to allow for the procedure to occasionally jump in

a seemingly “worse” direction in order to move out of a potential local minimum

and eventually find the global solution. We provide a rough description of the

algorithm now.

The simulated annealing algorithm first generates a random solution, cal-

culates its cost using an objective function, generates a random neighboring

solution, calculates the cost of this new solution with the same objective func-

tion, and then compares these costs using an acceptance probability function.

The acceptance probability is calculated by comparing the di↵erence of the two

costs with the so-called temperature, T . The parameter T is initially equal to

unity, and is decreased to a new value, T 0, after each iteration of the algorithm

by employing a scale factor ↵,

T 0 = ↵T . (11)

The factor ↵ is usually greater than 0.8, and is always less than 1. The tem-

perature allows for the algorithm to become less stochastic as the number of

iterations is increased. The value returned by the acceptance probability func-

tion is then compared to a randomly generated number to determine whether

the new solution is accepted. As a result, when the algorithm compares the

costs of these two solutions, there is a certain probability that, even if the new

solution is worse, it still might be accepted. This helps prevent the algorithm

from sinking into a local minimum. The process is repeated until an acceptable

solution is found.

In our particular situation, the solutions consist of values of the 5 parameters

and the objective function is the corresponding value of the �2 from Eq. (10).

We define the acceptance probability function of two uncertainties, e.g. �
0

and
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�
1

, for two di↵erent parameter sets as

exp

✓
�
0

� �
1

�
0

T

◆
(12)

where T is the temperature defined in Eq. (11). Overall, this optimization pro-

cedure proved to be the most successful. Gradient descent was successful when

the initial guess was guided according to physical intuition. However, simulated

annealing was able to determine the global solution without this external help.

We also investigated the robustness of this algorithm with respect to the factor

↵ used to lower the temperature. The solution was found relatively reliably for

all values of ↵ between 0.85 and 1. Below ↵ = 0.85 the process was still largely

successful, but not to the same degree. After finding the general range of the

global solution, our simulated annealing algorithm then completes a grid search

in a small region surrounding our potential solution to obtain the final minimum

with high precision.

4. Data Employed in the Optimization

As noted in Sec. 3, all of the optimization procedures rely on an objective

function which computes how closely the FREYA output reproduces available

experimental data. We now discuss in some detail the source and quality of the

data for 252Cf(sf). Though the available data for 252Cf(sf) are quite extensive,

we still were cautious in our selection to avoid fitting to out-of-date or low

quality data. We fit the 252Cf(sf) parameters to all eight observables mentioned

in the previous section.

We note that 252Cf(sf) is the only isotope we consider that has data available

for all observables used in the optimization. Thus the parameters for 252Cf(sf)

are the most constrained out of all the fits performed.

The observed neutron multiplicity distribution P (⌫) is taken from Ref. [13],

an evaluation of the prompt neutron multiplicity distributions for the sponta-

neous fission of a number of isotopes. This consensus resource combines all of

the reliable direct sources of data available at this time. We also employ this
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evaluation for the full distribution P (⌫), as well as the average neutron multi-

plicity, ⌫, and the second and third moments, ⌫
2

and ⌫
3

, which are defined in

Eq. (8). We have chosen to use ⌫ in addition to the actual distribution, because

the parameters in FREYA are capable of shifting ⌫ explicitly, as well as changing

the shape of P (⌫), as described in Sec. 2. Note that for the optimization, we

use the square root of the uncertainty given in the evaluation since when we

used the reported uncertainty, it was so low it dominated the optimization.

We have used the data from Ref. [14] for the neutron multiplicity as a func-

tion of fragment mass, ⌫(A). See Ref. [14] for more experimental specifics. While

Ref. [15] also measures ⌫(A), these data are not used in the optimization pro-

cedure. We do however compare FREYA to this result in Sec. 7. These two data

sets are very similar, so the decision between them was largely inconsequential

in terms of the fit.

We take the neutron multiplicity as a function of TKE from Ref. [16]. Since

these data are from 1988, this set is rather dated. However, this work includes

a thorough and honest statistical analysis of the results which yields reliable

uncertainties. While Ref. [15] includes a more recent measurement of ⌫(TKE),

it agrees within uncertainties with Ref. [16] except in regions where the TKE

is either very low or very high and is thus of low statistical significance. We

compare the FREYA results to both data sets in Sec. 7.

The prompt fission neutron energy spectrum is taken from the Mannhart

evaluation [17]. While also somewhat dated, it is a well-established evaluation.

We have used the non-smoothed data, which are presented as the ratio to a

Maxwellian distribution of temperature T = 1.32 MeV. We have multiplied

the evaluation by the Maxwellian at the center of each energy bin to obtain the

prompt fission neutron spectrum directly. There is also a smoothed version of

this spectrum which we have not used here because the non-smoothed version

provides an uncertainty while the smoothed spectrum does not. The disadvan-

tage of using this version is the fact that there is a slight kink around 0.1 MeV

in the Mannhart spectrum.

Finally, the photon multiplicity distribution, average photon multiplicity,
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and average photon energy are taken from Ref. [18], measured in 2012 using the

DANCE array. See Ref. [18] for more details on this analysis.

We now briefly discuss the data used in fitting the other spontaneously fis-

sioning isotopes in FREYA. Far fewer data are available for these. The optimiza-

tions for 240Pu(sf) and 242Pu(sf) were completed using the neutron multiplicity

distribution, average neutron multiplicity, average photon multiplicity, and av-

erage photon energy. The neutron multiplicity distribution and its moments

were taken from Ref. [13]. Indeed, evaluations from Ref. [13], available for all

spontaneously fissioning isotopes included in FREYA so far, were at times the

only data available. The average photon multiplicity and energy for 240Pu(sf)

and 242Pu(sf) both come from Ref. [19]. These data, taken in 2016, are the most

recent of all the data used in the optimization. There is also a prompt fission

neutron spectrum available for 240Pu(sf) [20]. However, we have chosen not to

use these data for the optimization due not only to the limited neutron energy

range but also to the questionable quality of the data: the 252Cf(sf) neutron

spectrum in Ref. [20] is in disagreement with the Mannhart spectrum [17].

The neutron multiplicity distribution, average neutron multiplicity, and sec-

ond and third moments of the distribution for 244Cm(sf) are also available from

[13]. We also fit to the neutron multiplicity as a function of fragment mass, take

from Ref. [21]. These data only have uncertainties for some values of A. These

uncertainties are around 0.15, so we took this to be the default uncertainty for

the values of ⌫(A) without one. We have done this because some value of uncer-

tainty is required for the calculation of �2. Finally we use the neutron spectrum

from Ref. [22]. Reference [22] also has a neutron spectrum for 242Pu(sf) but we

choose not to use it in the optimization due to quality issues.

The only available data for 238U(sf) and 238Pu(sf) are the neutron multi-

plicity distribution, the average neutron multiplicity, and the second and third

moments of the distribution from Ref. [13].
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e0 x c cS dTKE

(/MeV) (MeV)

y 10.429 1.274 1.191 0.875 0.525

�y ±1.090 ±0.187 ±0.362 ±0.020 ±0.078

y[7] 10.37 1.27 1.18 0.87 0.52

Table 2: The optimized parameter set for

252
Cf(sf) along with the previous values of the

parameters from [7].

5. Fit Results

We have confirmed the previous 252Cf(sf)fit results [7] within a reasonable

margin, produced uncertainties, and calculated correlation matrices for the pa-

rameters. In Table 2 we list our optimized parameter values for 252Cf(sf). These

results are consistent with the default values based on physical intuition given

in Sec. 2.

The optimized values for 252Cf(sf) from the preliminary optimization in

Ref. [7] are shown in table 2. There is some di↵erence between our results

and those of Ref. [7] because we employ some di↵erent data sets, as well as a

slightly di↵erent optimization scheme, as described in Sec. 3. While some pre-

liminary work was also done for 240Pu(sf), we provide the first complete analysis

for this isotope, as well as the other spontaneously fissioning isotopes in FREYA.

We calculate the probability as a function of the �2, as well as the expectation

values according to

P (~y) ⌘
�
�2(~y)

�n/2�1

e��2
(~y) , (13)

hyii =

Z
yi P (~y) d5~y , (14)

hyiyji =

Z
yiyj P (~y) d5~y , (15)

where ~y denotes the 5-dimensional vector containing the 5 parameter values.

We integrate over the parameter ranges. Here n is the number of degrees of

freedom for all observables. The variance and covariance of the parameters are

defined as

�2

yi
=

⌦
y2

i

↵
� hyii2 , �yiyj = hyiyji � hyii hyji . (16)
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e0 x c cS dTKE

e0

x

c

cS

dTKE

8
>>>>>>><

>>>>>>>:

1.0

�0.032

�0.737

0.924

�0.695

�0.032

1.0

�0.261

0.557

0.213

�0.737

�0.261

1.0

�0.423

0.458

0.924

0.557

�0.423

1.0

�0.673

�0.695

0.213

0.458

�0.673

1.0

9
>>>>>>>=

>>>>>>>;

Table 3: Correlation coe�cients for

252
Cf(sf).

The correlation matrices in Table 3 are readily calculated as

⇢ij =
�yiyj

�yi�yj

. (17)

While Eqs. (13)-(17) provide analytic definitions of these quantities, we have

numerically calculated the results in Table 3 using a Hessian. In particular,

we construct a function representing the logarithm of the probability of ~y and

then calculate the Hessian matrix at the optimal point using the parameter

uncertainties from Table 2. The negative of the inverse of this matrix is then

the covariance matrix. We use Eq. (17) to extract the correlation coe�cients

displayed in the tables.

In Fig. 1 we present contour plots of the �2 for di↵erent values of the param-

eters. We vary the linear combinations listed on the axes and fix all parameters

which are not listed to their central values. These plots can be interpreted as

surfaces in the higher dimensional space which gives us a particular uncertainty

for any choice of 5 parameters. As previously described, the particular linear

combinations of parameters was based on physical intuition in order to best

illustrate the nature of the parameter space we are working in. The linear com-

bination of parameters on the axes in Fig. 1 was determined by eye according

to the contour plots of the individual parameters. We do not show the variance

as an error bar in the lower plot, because it e↵ectively fills the entire displayed

range.

As discussed in greater detail in Sec. 3, employing a grid search will always

find the proper solution by testing every possible combination, whereas the

alternative optimization methods attempt to “climb” around these contours in

13



order to find the point of minimum uncertainty. These plots show that there is

not always a clear “valley” of minimal uncertainty, and a simple grid approach

is very likely to fall into a local minimum.

It is worth addressing the size of the �2 in our results. Our �2 is summed

over the uncertainty estimate for each bin of the data sets and evaluations we

fit to. While this value is very large, this should not suggest that our fit is low

quality, see Sec. 3.

While our main focus is on 252Cf(sf), we also completed the same analysis

for 238U(sf), 238Pu(sf), 240Pu(sf), 242Pu(sf), and 244Cm(sf), the other sponta-

neously fissioning isotopes currently included in FREYA [6]. These results are

listed in Table 4. A comparison of the fits for these isotopes to the data and

evaluations used in the fits are available in the Appendix.

While we have determined uncertainties on the parameter values for these

isotopes, obtaining reliable correlation matrices for them is di�cult. Table 4,

which also lists the number of data sets and evaluations used in our fits, makes

this obvious. If only a single evaluation is available, as is the case for 238U(sf)

and 238Pu(sf), it is di�cult to say, without other constraints, how changing one

parameter with respect to the others would a↵ect the correlation.

6. Interpretation

In this section we develop a physical interpretation for the parameter val-

ues obtained in Sec. 5. We have treated all spontaneously-fissioning isotopes

in FREYA individually, with all five parameters allowed to vary independently

regardless of how many data sets are available to constrain them. This is not

unreasonable because we do not generally expect the parameters to have the

same value for all fissioning systems.

The parameters c and dTKE, which influence P (⌫) and ⌫, are perhaps best

constrained because evaluations of P (⌫) and the values of its moments are avail-

able for all isotopes in FREYA. Indeed, for some cases, these are the only available

parameter constraints. Because the shape of P (⌫) and its moments a↵ect both

c and dTKE, and given that ⌫, ⌫
2

and ⌫
3

vary considerably from isotope to

14



e
0

(/MeV) x c cS dTKE (MeV) # Data Sets # Evaluations
238U(sf)

y 10.391 1.220 0.939 0.899 �1.375 0 1 [13]
�y ±0.352 ±0.071 ±0.283 ±0.280 ±0.727 - -

238Pu(sf)
y 10.521 1.232 1.968 0.893 �1.408 0 1 [13]
�y ±0.581 ±0.221 ±0.071 ±0.071 ±3.424 - -

240Pu(sf)
y 10.750 1.307 3.176 0.908 �3.219 1 [19] 1 [13]
�y ±0.138 ±0.071 ±0.355 ±0.023 ±0.112 - -

242Pu(sf)
y 10.018 1.144 3.422 0.911 �1.662 1 [19] 1 [13]
�y ±1.768 ±0.152 ±0.341 ±0.257 ±0.118 - -

244Cm(sf)
y 10.488 1.239 1.391 0.906 �4.494 2 [21, 22] 1 [13]
�y ±1.519 ±0.148 ±0.582 ±0.322 ±0.167 - -

252Cf(sf)
y 10.429 1.274 1.191 0.875 0.525 4 [14, 15, 16, 18] 2 [13, 17]
�y ±1.090 ±0.187 ±0.362 ±0.020 ±0.078 - -

Table 4: Results of the optimization for all spontaneously-fissioning isotopes modeled by

FREYA. The best fit values of the five parameters, y, and their associated standard deviations,

�y , are given for each isotope. In addition, the number of data sets and evaluations used for

each isotope are indicated, along with the references for these data. Note that in the case of

Ref. [13], the evaluation gives the result for multiple observables: P (⌫), ⌫, ⌫2 and ⌫3.
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isotope, we can expect c and dTKE to vary independently as well. We might

expect the largest range of variation for these as well.

The other three parameters (e
0

, x and cS) have fewer data available to

constrain them. The average photon multiplicity and energy per photon can be

used to guide the value of cS for 240Pu(sf), 242Pu(sf), and 252Cf(sf). We have

⌫(A) data to constrain x for 244Cm(sf) and 252Cf(sf). Finally, we have used

spectral data for 244Cm(sf) and 252Cf(sf) which provides a partial constraint on

e
0

. We remark that it is only partial because all parameters influence the prompt

fission neutron spectrum. While e
0

is directly related to the temperature, see Eq.

(2) and thus the slope of the prompt fission neutron spectrum, the parameters

cS , x, and c are also related to the temperature, at least indirectly. Recall

that c sets the level of thermal fluctuations, Eq. (5); x controls the sharing

of excitation energy between fragments, initially related to the level density,

Eq. (4); and cS is related to the scission temperature, Eq. (3). Thus these

parameters all also influence the spectrum.

We expect cS to be less than unity while we expect x and c to be larger

than unity. Since e
0

is related to the level density parameter, we expect a

value of 8 � 12 /MeV from other work [23]. We may also expect dTKE to vary

considerably to make up for a lack of other constraints on the parameters aside

from ⌫ and also, because, on some cases the input data used for TKE(AH) have

either large uncertainties based on low-statistical samples, or no uncertainties

given. An examination of the results in Table 4 can give us insight into how

well the optimization procedure met our expectations.

The parameter values for the spontaneously fissioning isotopes in FREYA 2.0.2

[6] were obtained in a far more empirical fashion. The values for 252Cf(sf) were

taken from Ref. [7], obtained by a grid search procedure. Universal values were

then assumed for cS and e
0

. (We note that while e
0

was fixed to the 252Cf(sf)

value from Ref. [7] for neutron induced fission, the value e
0

= 10.0724/MeV

was retained from FREYA version 1.0 [5] for the other spontaneously fissioning

isotopes.) While one can reasonably assume that e
0

has a universal value since

the nuclear level densities are related to nuclear structure and not reaction
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dependent, cS was fixed for expedience. The x parameter for 240Pu(sf) in FREYA

2.0.2 was fixed from experimental analysis of neutron-neutron correlations in

Ref. [8], an observable not used in this optimization because it requires full

analysis of the detector setup in each case. However, these correlations exhibit

strong sensitivity to x [10]. For other spontaneously fissioning isotopes, it was

taken to be ⇠ 1.2.

The parameter c was fixed via examination of P (⌫). Finally, dTKE was

tuned to ⌫ after the other parameter values were fixed. The work in this paper

is the first to make a full optimization of all parameters for all isotopes. It

is interesting to compare how well this empirical approach compares with the

numerical optimization performed in the current paper.

As already noted, we do not expect c and dTKE to be independent of isotope.

As can be seen in Table 4, they are not. The values obtained for c are driven

entirely by P (⌫) and its moments. In the cases where c is large, c > 3, 240Pu(sf)

and 242Pu(sf), it is because despite the low average neutron multiplicity, P (⌫)

is broader than might be expected for low ⌫. In such cases, the range of c needs

to be increased to match the higher moments of the multiplicity distribution,

⌫
2

and ⌫
3

. There is also one exception to the expectation that c � 1, 238U(sf).

In this case, the evaluated P (⌫) is actually more peaked than a distribution

with c = 1 for the same ⌫, requiring the fluctuations to be reduced to achieve

agreement with the evaluated P (⌫) and its moments. Note, however, that,

within uncertainties, c is still compatible with unity in this case. The values of c

in FREYA 2.0.2 were 0.92, 1.91, 3, 3.4 and 1.34 for 238U(sf), 238Pu(sf), 240Pu(sf),

242Pu(sf) and 244Cm(sf) respectively, in addition to the value of 1.18 found

in Ref. [7] for 252Cf(sf). These empirical guesses are very close to the results

obtained from our current optimization based on evaluations that explicitly

constrain c.

Next, as indicated, we expect dTKE to vary from case to case, independent

of isotope. Ideally dTKE should be zero with a perfect model along with high

statistics input yields and TKE (AH). This is indeed the case for 252Cf(sf), a

well-measured standard with a high spontaneous fission rate. dTKE is small
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for 252Cf(sf): dTKE = 0.525 MeV here and 0.52 MeV in Ref. [7]. We now

compare our optimized dTKE values for the other isotopes studied here with

those in FREYA 2.0.2 [6]: dTKE = �1.345 MeV, �1.366 MeV, �3.071 MeV,

�1.600 MeV, and �4.35 MeV for 238U(sf), 238Pu(sf), 240Pu(sf), 242Pu(sf) and

244Cm(sf) respectively. These values are in rather good agreement with those

found in our optimization. We note that the large range in dTKE values is

expected and does not a↵ect the physical interpretation of the parameters.

It is notable that these values are, in contrast to that for 252Cf(sf), all nega-

tive and the absolute values are considerably larger. A negative value for dTKE

indicates that the reported TKE(AH) distribution is too high, reducing the

overall available excitation energy for neutron emission. However, the measured

fission rates are much lower for other isotopes and large fluctuations exist in the

data. In most of these cases, the number of fission events measured was small

so that not many events go into each AH bin. FREYA samples the yields and

TKE (AH) directly from measured fission fragment data, often with undefined

or unquantified systematic uncertainties. Thus the input TKE(AH) in FREYA

in these cases are based on low statistics, sometimes without uncertainties on

the data, and with unknown systematic errors. Introducing dTKE is a way to

correct for these unknowns as well as o↵ering a means to compensate for any

remaining, unquantified, physics e↵ects.

Previously, the value of cS was fixed at 0.87 for every isotope of FREYA. We

can see that our results for 252Cf(sf) agree with this but the 240Pu(sf) result

is somewhat larger. We generally find that the spin temperature is close to

the scission temperature, resulting in fragment spins close to the maximum

available rotation. We note that there is some correlation between cS and

dTKE. While it may be especially weak for 252Cf(sf), it could be responsible

for the di↵erences observed between the values of dTKE in FREYA 2.0.2 [24]

and Table 4 since changing cS changes E
rot

which, in turn, modifies E
stat

, thus

ultimately a↵ecting dTKE. Increasing cS , as for e.g. 240Pu(sf) to 0.908 from

0.87, increases E
rot

. Thus for a fixed scission energy E
sc

then, E
stat

is reduced,

decreasing the energy available for neutron emission. To keep ⌫ fixed, absent
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other variation, dTKE has to decrease. This is seen in Table 4 as dTKE is now

�3.219 MeV instead of �3.07 MeV. Similar reductions of dTKE can be seen for

increased cS in the other cases studied.

The parameter x controls the distribution of statistical excitation energy be-

tween the fragments after scission. It is well established that x is greater than

unity based on ⌫(A) data and previous measurements of the average neutron

multiplicities from the light and heavy fragments respectively. The previous val-

ues of x [24] generally assumed x ⇠ 1.2 aside from the value of 1.27 established

in Ref. [7] for 252Cf(sf) and the 1.3 found for 240Pu(sf) based neutron-neutron

angular correlation data [8]. The estimates of x ⇠ 1.1 � 1.2 for the other spon-

taneously fissioning isotopes were borne out by our independent fits. Despite

the fact that the x range was 1 < x < 1.5 in all the fits, with ⌫(A) data only

available for 244Cm(sf) and 252Cf(sf), the optimized values are very similar to

the default of x ⇠ 1.2 assumed previously.

The values of e
0

in Table 4 are remarkably similar, between 10/MeV and

10.75/MeV for all isotopes, despite the wide range, 7 < e
0

< 12/MeV. This

is particularly striking because, of the observables considered, only the prompt

fission neutron spectrum shows any direct dependence on e
0

, even though it also

depends on every other parameter. For example, increasing cS gives more avail-

able excitation energy to neutron emission which could, in principle, increase

the average energy per neutron rather than increasing the number of neutrons

and thus change the slope of the prompt fission neutron spectrum. Giving a

larger share of the excitation energy to the light fragment would also influence

the average neutron energy and thus the spectral shape, as would modifying the

fluctuations in excitation energy via a change in c because increased fluctuations

in statistical excitation, while modifying P (⌫), can also modify the neutron en-

ergy. Despite this, e
0

remains remarkably similar for all cases, even though it

was fit independently. Recall that, even though Eq. (2) refers to the tempera-

ture at scission, the same equation applies to every neutron emitted throughout

the fission process as well. Thus, in turn, e
0

influences the emission of every

neutron even though it only has a visible influence on the neutron spectrum and
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not on e.g. ⌫(A).

It is worth noting, that the results for e
0

, x, and xS in Table 4 are all very

similar. The similarity of these parameters is an indication that the mechanisms

employed in FREYA are physically relevant. As mentioned in Sec. 2, we allow

a larger variation of c for some isotopes because the widths of the neutron

multiplicity distributions can vary significantly between isotopes.

We can also gain physical intuition from the results in Table 3. As expected

mathematically, these matrices are symmetric with unity along the diagonal. In

addition, the o↵-diagonal values are bounded by unity. A positive correlation

between two parameters suggests that, when one of these parameters is raised,

in order to maintain agreement with the data, the other must increase as well.

A negative correlation suggests that when one is raised, the other needs to

decrease to compensate. A correlation with an absolute value close to unity

indicates that the relationship between parameters is strong while, when the

correlation is close to zero, this relationship is weak.

We now discuss the correlations between the input parameters, starting with

the correlation of e
0

with the other parameters and proceeding across Table 3.

The correlation between e
0

and x is the weakest. This is because the initial

excitation energy partition is divided up between the two fragments according

to their level densities, as described in Sec. 2. The ratio of the level densities

is independent of changes to e
0

. The parameter x is a perturbation on that

ratio, resulting in a weak correlation. The correlation between e
0

and c is large

and negative so that, when e
0

is increased, c decreases. Since e
0

is related to

the fragment energy before neutron emission, see Eq. (2), increasing e
0

while

keeping the energy for neutron emission fixed forces the temperature to increase.

Since c is related to the thermal fluctuations in the decaying nucleus, if the

temperature increases, then the fluctuations can also increase so that c has to

decrease to compensate. The correlation between e
0

and cS is the strongest of

all, near +1, implying that cS must increase when e
0

increases. Again, increasing

e
0

can imply an increase in temperature and a probability of greater neutron

emission. To compensate, cS needs to increase to give more rotational energy
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to the fragments and more photon emission to keep the neutron emission fixed.

There is also a relatively strong, negative, correlation between e
0

and dTKE. A

higher fragment temperature could either lead to increased neutron emission or

emission of higher energy neutrons. If fewer neutrons are emitted with higher

average energy, then dTKE would need to decrease to compensate to increase

the total excitation energy to increase neutron emission.

There is a relatively weak correlation between x and c. Since x adjusts how

the statistical excitation energy is divided between the fragments, it primarily

a↵ects ⌫(A) whereas c adjusts the width of the multiplicity distribution P (⌫).

A moderate positive correlation is seen between x and cS . If x is increased to

give more energy to the light fragment, the average neutron multiplicity can be

expected to increase. Thus cS must increase to take more rotational energy and

keep the neutron multiplicity constant. The correlation between x and dTKE

is small and positive so that, if x increases neutron emission, then dTKE must

increase to compensate and reduce the total excitation energy.

A moderate, negative correlation is seen between c and cS . If c increases,

⌫ will decrease so that, for ⌫ to be maintained, the rotational energy, and thus

cS , has to decrease. On the other hand, the correlation between c and dTKE

is moderate but positive. If neutron emission increases with increasing c, then

to increase the total excitation energy to compensate, dTKE has to increase

also to decrease the neutron multiplicity. Finally, there is a relatively large

negative correlation between cS and dTKE. If cS is increased, the fragment spin

and thus rotational energy increases, taking energy away from that available

for statistical neutron emission. Thus dTKE has to decrease to give more total

excitation energy to the fragments and maintain the value of ⌫.

7. Comparison to Data

We now use the optimized parameters presented in Sec. 5 to generate a set

of one million FREYA events, and compare this to the data used in our opti-

mization, along with some data which were not included. We present the direct

comparisons as well as ratios of the calculated to experimental values (C/E).
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Figure 2: (Color online) (a) Neutron multiplicity distribution for

252
Cf(sf) compared to the

Santi-Miller evaluation Ref. [13]. Note that for the comparison, we use the square root of the

uncertainty given in the evaluation since the reported uncertainty was so low it dominated the

optimization. Note that the uncertainty on the FREYA calculation is the variance of the result,

which we then present as a standard deviation. Therefore this should not be interpreted as

the range of values we should expect from FREYA. In this particular case, since we are not

calculating an average, we instead take this variance to be 1/

p
N where N is the number of

observed events in that bin. (b) Ratio of calculated values to evaluation results.

It is important to note that throughout the section, any uncertainties given

on the results from FREYA arise from calculating the variance arising from the

propagation of the uncertainties on the model parameters and are not indicative

of any statistical uncertainty in the FREYA calculation. In cases where there is

no relevant variance to calculate, we instead use 1/
p

N , where N is the rele-

vant event multiplicity in the bin of a distribution. Especially in this case, this

’uncertainty’ should not be compared to the uncertainty on the experimental

data.

As can be seen in Figs. 2 and 3 we reproduce the neutron probability distri-

bution P (⌫) within very low uncertainty in both cases. As discussed in Sec. 4,

the neutron multiplicity distributions are well established for both of these iso-

topes. Even where we do di↵er from the result, the uncertainties on C/E are

still compatible with unity. We also reproduce the average neutron multiplicity

in Table 5 to one or two decimal points, e↵ectively the regime in which we can

accurately interpret the FREYA results. We also note that the neutron multi-
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⌫n Evaluation FREYA C/E

238
U(sf)

⌫ 1.98± 0.03 2.0± 0.94 1.01± 0.22

⌫2 2.8743± 0.1411 2.87± 3.37 1.0± 1.37

⌫3 2.8219± 0.481 2.83± 9.81 1.0± 11.71

238
Pu(sf)

⌫ 2.19± 0.07 2.17± 1.15 0.99± 0.27

⌫2 3.8736

2
3.85± 4.35 0.99± 1.26

⌫3 5.417

3
5.25± 10.97 0.97± 4.1

240
Pu(sf)

⌫ 2.154± 0.005 2.22± 1.25 1.03± 0.33

⌫2 3.7889± 0.029 4.26± 4.88 1.12± 1.66

⌫3 5.2105± 0.1492 6.53± 13.3 1.25± 6.51

242
Pu(sf)

⌫ 2.149± 0.008 2.12± 1.19 0.99± 0.3

⌫2 3.8087± 0.036 3.79± 4.51 0.99± 1.4

⌫3 5.3487± 0.036 5.36± 12.13 1.0± 5.14

244
Cm(sf)

⌫ 2.71± 0.01 2.7± 1.16 1.0± 0.18

⌫2 5.941± 0.0188 5.95± 5.46 1.0± 0.84

⌫3 10.112± 0.175 10.17± 16.78 1.01± 2.75

252
Cf(sf)

⌫ 3.757± 0.01 3.74± 1.3 1.0± 0.12

⌫2 11.9517± 0.0188 11.94± 8.79 1.0± 0.54

⌫3 31.668± 0.175 31.84± 39.94 1.01± 1.59

Table 5: Average neutron multiplicity and the second and third moments of the neutron

multiplicity distribution for all six isotopes in FREYA compared with the evaluations in Ref. [13].

Note that the uncertainty on the FREYA calculation is a calculation of the variance of the result,

and should therefore not be interpreted as the range of values we should expect FREYA to return.
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Figure 3: (Color online) The same result as in Fig. 2 for

240
Pu(sf).

plicity moments have improved with the new set of parameters over those from

Ref. [7]. The moments are important for criticality studies. Note that the un-

certainty on the FREYA calculation is a calculation of the variance of the result,

and should therefore not be interpreted as the range of values we should expect

FREYA to return.

The prompt fission neutron spectrum is compared to the Mannhart evalua-

tion in Fig. 4. We show the results on a logarithmic scale on the x axis in (a)

and (b) as well as the y axis in (c) and (d). These particular scales allows us to

get a good sense of the behavior of the spectrum in both the low energy regime

from 0 to 1 MeV, in (a) and (b), as well as the high energy range from 1 to 12

MeV, in (c) and (d). FREYA reproduces this distribution with high accuracy in

the low energy range except for the slight kink around 0.1 MeV present in the

non-smoothed version of the Mannhart evaluation, which we employ because it

includes uncertainties. There is a more significant deviation in the high energy

range, but the range of uncertainty in C/E is consistent with unity for neutron

energies above 7 MeV. It is also important to note that the uncertainties are

extremely large in this high-energy region for both the experimental data and

the FREYA output. We note that the FREYA uncertainties in the high energy tail

of the spectrum can be reduced by generating a larger number of events while
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Figure 4: (Color online) (a) Neutron energy spectrum for

252
Cf(sf) from FREYA as well as the

Mannhart evaluation [17] with a logarithmic scale on the x axis. (b) Ratio of calculated values

to evaluation results. A logarithmic scale is used on the x-axis in both cases. In (c) and (d)

the same results are shown now with a logarithmic scale on the y-axis, and a linear scale on

the x-axis in order to highlight the di↵erence and uncertainty at high energy.

the uncertainties on the evaluation cannot.

The FREYA results di↵er more significantly from the data on the neutron

multiplicity as a function of fragment mass, as seen in Fig. 5. This is expected

since x is single valued and our fit employs the mass region 105 < A < 145.

Even though we have only used this well-behaved region for our optimization

procedure, it is important to note that the result is still within the uncertainty

on C/E, meaning that this result is still statistically successful. We can also

compare to experimental data not used in the optimization. In Fig. 5, we show

a more recent data set for ⌫(A) which also agrees well with FREYA in the fit

region. Note that the uncertainty on the FREYA calculation is a calculation of

the variance of the result, and should therefore not be interpreted as the range

of values we should expect FREYA to return.

The results for the neutron multiplicity as a function of TKE in Fig. 6 are

particularly successful for 160 < TKE < 190 MeV. In the region of low TKE, we

see far fewer fragments, so the results in this region are less reliable. Similarly, as

we move to higher TKE, while the results begin to di↵er more, the uncertainty

on C/E typically contains unity since there are also fewer events with high TKE.
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Average Measured FREYA C/E

238
U(sf)

N� � 6.49± 2.42 �
✏� (MeV) � 0.94± 0.87 �

238
Pu(sf)

N� � 6.47± 2.43 �
✏� (MeV) � 1.05± 0.93 �

240
Pu(sf)

N� [19] 8.2± 0.4 6.6± 2.48 0.8± 0.09

✏� [19] (MeV) 0.8± 0.07 1.0± 0.91 1.24± 1.26

242
Pu(sf)

N� [19] 6.72± 0.07 6.61± 2.43 0.98± 0.13

✏� [19] (MeV) 0.843± 0.012 0.96± 0.89 1.14± 1.12

244
Cm(sf)

N� � 7.07± 2.56 �
✏� (MeV) � 1.01± 0.93 �

252
Cf(sf)

N� [18] 8.14± 0.4 7.71± 2.8 0.95± 0.12

✏� [18] (MeV) 0.94± 0.05 0.91± 0.86 0.97± 0.83

Table 6: Average photon multiplicity and average energy per photon for all six isotopes in

FREYA compared with experimental data (when available). The data for

252
Cf(sf) comes from

Ref. [18] while the data for

240
Pu(sf) and

242
Pu(sf) both come from Ref. [19]. Note that the

uncertainty on the FREYA calculation is a calculation of the variance of the result, and should

therefore not be interpreted as the range of values we should expect FREYA to return.

We also show the more recent data, not used in the fit, in Fig. 6. FREYA actually

agrees better with this new data at large TKE because ⌫ (TKE) ! 0 at large

TKE.

As explained in Sec. 2, the parameters, especially c, have a high level of

control over the shape of the neutron multiplicity distribution. This is, however,

not the case for the photon multiplicity distribution: there is no parameter

that has direct control over the width of this distribution as there is for P (⌫).

The shape generated by FREYA in Fig. 7 is narrower than the data. There is

an estimated uncertainty of ±1 in the detected photon multiplicity [25]. If

we adjust the FREYA output to account for multiple scattering [25], the width

becomes broader. As we can see in Fig. 7, after adjusting the FREYA output

for multiple scattering, the agreement of FREYA with the data is considerably

improved. As is evident, the uncertainty on C/E is compatible with unity in

the high multiplicity range. The average photon multiplicity is also closely

recreated. These results can be found in Table 6, along with the average energy
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Figure 5: (Color online) (a) Neutron multiplicity as a function of fragment mass for

252
Cf(sf)

along with experimental data from Refs. [14, 15]. As discussed in Sec. 4, we use the Dushin

data in the fit, and provide the Göök data [15] for comparison. Note that the uncertainty on

the FREYA calculation is a calculation of the variance of the result, and should therefore not be

interpreted as the range of values we should expect FREYA to return. (b) Ratio of calculated

result from FREYA to the experimental results.

per photon.

8. Conclusions

We have performed a numerical optimization of the 5 physics-based param-

eters in FREYA for all spontaneously-fissioning isotopes so far included. The

fits, using simulated annealing to find a global minimum, which agree with our

physics intuition, are also in rather good agreement with the empirical values

in FREYA 2.0.2 [6].

The parameters provide good agreement with the data where they are avail-

able. We will next apply the fitting procedure we have developed here to

neutron-induced fission.

Appendix A. 238,242Pu(sf) and 238U(sf) neutron multiplicity distri-
butions

In this appendix, we show the neutron multiplicity distributions, P (⌫) re-

sulting from our fits to the 238U(sf), 238Pu(sf), and 242Pu(sf) evaluations by
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Figure 6: (Color online) (a) Neutron multiplicity as a function of total kinetic energy for

252
Cf(sf) compared to experimental data from Refs. [15, 16]. As is discussed in Sec. 4, we use

the Budtz-Jorgensen data [16] for the fit, and provide the the Göök data [15] for comparison.

Note that the uncertainty on the FREYA calculation is a calculation of the variance of the

result, and should therefore not be interpreted as the range of values we should expect FREYA
to return. (b) Ratio of calculated FREYA result to the experimental results.

Santi and Miller [13]. The 244Cm(sf) multiplicity distribution is shown in the

next section, along with comparisons to other available 244Cm(sf) data.

The three isotopes shown here, like 240Pu(sf), as shown in Fig. 3, are char-

acterized by rather low average neutron multiplicities, ⌫ ⇠ 2 for 238U(sf) and

⌫ ⇠ 2.15 for 238,240,242Pu(sf). These isotopes are also distinguished by the lack

of other data for optimization. While 240,242Pu(sf) have had recent measure-

ments of the average photon multiplicity and energy per photon, as shown in

Table 6, the only data for optimization of the FREYA parameters for 238U(sf)

and 238Pu(sf) are the Santi-Miller evaluations of P (⌫) and the corresponding

neutron multiplicity moments.

Figure A.8 shows the neutron multiplicity distribution for 238U(sf) compared

to the FREYA calculation. This isotope, with the lowest neutron multiplicity, is

especially interesting because it is the only one with c < 1. Indeed, it is the only

one where ⌫
3

< ⌫
2

, with µ
2

= 2.87 and ⌫
3

= 2.82 respectively. With the default

value of c = 1, when the neutron multiplicity is low, FREYA tends to produce P (⌫)

distributions more narrowly peaked than the evaluations, requiring c ⇠ 2�3 for

28



0.00

0.05

0.10

0.15

0.20

0.25

P
(N

�
)

(a)

252Cf(sf)

FREYA

Chyzh [18]

0 3 6 9 12 15 18 21
N�

0.0

0.5

1.0

1.5

2.0

C
/E

(b) �2
O = 3.46

0.00

0.05

0.10

0.15

0.20

0.25

P
(N

�
)

(c)

252Cf(sf)

FREYA

Chyzh [18]

0 3 6 9 12 15 18 21
N�

0.0

0.5

1.0

1.5

2.0

C
/E

(d) �2
O = 3.3

Figure 7: (Color online) (a) Gamma multiplicity distribution for

252
Cf(sf) along with ex-

perimental data from [18] before correcting for multiple scattering. (b) Ratio between the

calculated values from FREYA and the experimental data. (c) Gamma multiplicity distribution

for

252
Cf(sf) along with experimental data from [18] after correcting for multiple scattering.

(d) Ratio between the calculated values from FREYA and the experimental data.

the Pu(sf) isotopes included in FREYA, see Table 4. However, 238U(sf) is the only

isotope where c = 1 produces a neutron multiplicity distribution wider than the

evaluation, requiring c < 1. With the fitted value of c = 0.939 in FREYA, there

is good agreement with P (⌫) as well as with the moments of the distribution,

see Table 5.

On the other hand, even though ⌫ for the Pu(sf) isotopes is only 7.5% larger

than than of 238U(sf), the higher moments are considerably larger, leading to

a broader P (⌫). For all three Pu(sf) isotopes, ⌫
2

⇠ 3.8 and ⌫
3

⇠ 5.3. These

multiplicity distributions, considerably broader than a default c = 1 calculation

in FREYA, result in the optimized values of c to be ⇠ 2 � 3.4, see Table 4. In

each case, ⌫
2

is approximately 76% larger than ⌫ while ⌫
3

increases by ⇠ 40%

over ⌫
2

.

The evaluated multiplicity distributions are compared to the optimized FREYA

results in Figs. A.9 and A.10. The agreement with 242Pu(sf) and FREYA is better

than that for 238Pu(sf) where FREYA underestimates ⌫
3

by 3%.
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Figure A.8: (Color online) (a) Neutron multiplicity distribution for

238
U(sf) is compared to

the Santi-Miller evaluation Ref. [13]. Note that for the comparison, we use the square root of

the uncertainty given in the evaluation, since the actual reported uncertainty was so low it

dominated the optimization. (b) Ratio of calculated values to evaluation results.

Appendix B. 244Cm(sf) results for P (⌫), ⌫(A) and prompt fission
neutron spectrum

Because 244Cm(sf) has more data available for optimization than the evalua-

tion of P (⌫) and the multiplicity moments, we have collected all the comparisons

of the 244Cm(sf) data with FREYA results in this appendix. While there are data

on ⌫(A) and the prompt fission neutron spectrum for 244Cm(sf), these data

are not of very high quality. Nonetheless, they were useful for constraining the

FREYA parameters and lead to results consistent with the other fits.

We note that the 244Cm(sf) neutron multiplicity is considerably larger than

those in Appendix Appendix A, ⌫ = 2.71 relative to ⌫ ⇠ 2 � 2.15 for 238U(sf)

and Pu(sf). Consequently the behavior of the moments of P (⌫) are more similar

to those of 252Cf(sf): ⌫
2

/⌫ = 2.19 for 244Cm(sf) and 3.18 for 252Cf(sf) while

⌫
3

/⌫
2

= 1.70 for 244Cm(sf) and 2.65 for 252Cf(sf). In the case of the Pu isotopes,

⌫
2

/⌫ < 2 and ⌫
3

/⌫
2

⇠ 1.4, again emphasizing the relative narrow multiplicity

distributions attendant to smaller average neutron multiplicities. The optimal

value for c is thus reduced considerably for 244Cm(sf): c = 1.391, similar to

the result for 252Cf(sf) of c = 1.191. The comparison with FREYA, shown in
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Figure A.9: (Color online) (a) Neutron multiplicity distribution for

238
Pu(sf) is compared to

the Santi-Miller evaluation Ref. [13]. Note that for the comparison, we use the square root of

the uncertainty given in the evaluation, since the actual reported uncertainty was so low it

dominated the optimization. (b) Ratio of calculated values to evaluation results.

Fig. B.11, shows good agreement with the evaluation of Ref. [13].

The neutron multiplicity as a function of fragment mass is shown compared

to FREYA in Fig. B.12. While the generic sawtooth pattern is recreated well,

there are some di↵erences, especially near symmetry where the ‘tooth’ calculated

with FREYA is sharper than that of the data. The peak of ⌫(A) of the measured

distribution is at a somewhat lighter mass number than in FREYA. Otherwise

the agreement with the overall trends of the data away from symmetry. It is

worth noting that Ref. [21] made corrections to their 244Cm(sf) data based on

a 252Cf(sf) measurement taken with the same apparatus. The corrected ⌫(A),

shown here, resulted in a significant backward shift of the light fragment peak

near symmetry.

Finally, we compare FREYA to a measurement of the 244Cm(sf) prompt fission

neutron energy spectrum in Fig. B.13. The measured energy range is rather

narrow, with a good deal of scatter between the points and a drop o↵ of the

lowest energy point. Nonetheless the agreement of the data with the calculation

is rather good over the common energy interval.
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Figure A.10: (Color online) (a) Neutron multiplicity distribution for

242
Pu(sf) is compared

to the Santi-Miller evaluation Ref. [13]. Note that for the comparison, we use the square root

of the uncertainty given in the evaluation, since the actual reported uncertainty was so low it

dominated the optimization. (b) Ratio of calculated values to evaluation results.
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G Sibbens, D Vanleeuw, and M. Vidali, Impact of low-energy photons on

the characteristics of prompt fission �-ray spectra Phys. Rev. C 93 (2016)

054603.

35



[20] Z.A. Aleksandrova, V.I. Bol’shocv, V.F. Kuznetsov, G.N. Smirenkin,

M.Z. Tarasko, Spectra of the Prompt Neutrons Arising from the Spon-

taneous Fission of 252Cf, 244Cm, and 240Pu Atomnaya Energiya 36 (1973)

282-285.

[21] R. Schmidt and H. Henschel, Comparison of the Spontaneous Fission of

244Cm(sf)and 252Cf(sf), Nucl. Phys. A 395 (1983) 29-43.

[22] L.M. Belov, M.V. Blinov, N.M. Kazarinov, A.S. Krivokhatskiy, and A.N.

Protopopov Spectra of Fission Neutrons of 244Cm(sf), 242Pu(sf), and

239Pu(sf), Yaderno-Fizicheskie Issledovaniya Reports 6 (1968) 94.

[23] R. Capote et al., RIPL – Reference Input Parameter Library for Calcu-

lations of Nuclear Reactions and Nuclear Data Evaluations, Nucl. Data

Sheets 110 (2009) 3107.

[24] J. M. Verbeke, J. Randrup and R. Vogt, Fission Reaction Event Yield

Algorithm: FREYA 2.0.2 User Manual, LLNL report LLNL-SM-705798.

[25] A. Chyzh, private communication.

36


