DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony

Abstract

Here, we employed an in situ electrochemical cell in the transmission electron microscope (TEM) together with ex situ time-of-flight, secondary-ion mass spectrometry (TOF-SIMS) depth profiling, and FIB–helium ion scanning microscope (HIM) imaging to detail the structural and compositional changes associated with Na/Na+ charging/discharging of 50 and 100 nm thin films of Sb. TOF-SIMS on a partially sodiated 100 nm Sb film gives a Na signal that progressively decreases toward the current collector, indicating that sodiation does not proceed uniformly. This heterogeneity will lead to local volumetric expansion gradients that would in turn serve as a major source of intrinsic stress in the microstructure. In situ TEM shows time-dependent buckling and localized separation of the sodiated films from their TiN-Ge nanowire support, which is a mechanism of stress-relaxation. Localized horizontal fracture does not occur directly at the interface, but rather at a short distance away within the bulk of the Sb. HIM images of FIB cross sections taken from sodiated half-cells, electrically disconnected, and aged at room temperature, demonstrate nonuniform film swelling and the onset of analogous through-bulk separation. TOF-SIMS highlights time-dependent segregation of Na within the structure, both to the film-current collector interface and to the film surface where amore » solid electrolyte interphase (SEI) exists, agreeing with the electrochemical impedance results that show time-dependent increase of the films’ charge transfer resistance. We propose that Na segregation serves as a secondary source of stress relief, which occurs over somewhat longer time scales.« less

Authors:
 [1];  [1];  [2];  [1];  [3];  [4];  [5];  [4];  [3];  [6]
  1. Univ. of Alberta, Edmonton, AB (Canada). Chemical and Materials Engineering
  2. Univ. of Alberta, Edmonton, AB (Canada). nanoFAB Fabrication and Characterization Facility
  3. Univ. of Connecticut, Storrs, CT (United States). Dept. of Materials Science and Engineering
  4. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies
  5. Univ. of Alberta, Edmonton, AB (Canada). Dept. of Chemistry
  6. Clarkson Univ., Potsdam, NY (United States). Chemical & Biomolecular Engineering and Mechanical Engineering
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1512876
Report Number(s):
SAND-2015-2969J
Journal ID: ISSN 1530-6984; 662092
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 15; Journal Issue: 10; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; antimony; in situ TEM; lithium ion battery; operando; sodium ion battery

Citation Formats

Li, Zhi, Tan, Xuehai, Li, Peng, Kalisvaart, Peter, Janish, Matthew T., Mook, William M., Luber, Erik J., Jungjohann, Katherine L., Carter, C. Barry, and Mitlin, David. Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony. United States: N. p., 2015. Web. doi:10.1021/acs.nanolett.5b03373.
Li, Zhi, Tan, Xuehai, Li, Peng, Kalisvaart, Peter, Janish, Matthew T., Mook, William M., Luber, Erik J., Jungjohann, Katherine L., Carter, C. Barry, & Mitlin, David. Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony. United States. https://doi.org/10.1021/acs.nanolett.5b03373
Li, Zhi, Tan, Xuehai, Li, Peng, Kalisvaart, Peter, Janish, Matthew T., Mook, William M., Luber, Erik J., Jungjohann, Katherine L., Carter, C. Barry, and Mitlin, David. Mon . "Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony". United States. https://doi.org/10.1021/acs.nanolett.5b03373. https://www.osti.gov/servlets/purl/1512876.
@article{osti_1512876,
title = {Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony},
author = {Li, Zhi and Tan, Xuehai and Li, Peng and Kalisvaart, Peter and Janish, Matthew T. and Mook, William M. and Luber, Erik J. and Jungjohann, Katherine L. and Carter, C. Barry and Mitlin, David},
abstractNote = {Here, we employed an in situ electrochemical cell in the transmission electron microscope (TEM) together with ex situ time-of-flight, secondary-ion mass spectrometry (TOF-SIMS) depth profiling, and FIB–helium ion scanning microscope (HIM) imaging to detail the structural and compositional changes associated with Na/Na+ charging/discharging of 50 and 100 nm thin films of Sb. TOF-SIMS on a partially sodiated 100 nm Sb film gives a Na signal that progressively decreases toward the current collector, indicating that sodiation does not proceed uniformly. This heterogeneity will lead to local volumetric expansion gradients that would in turn serve as a major source of intrinsic stress in the microstructure. In situ TEM shows time-dependent buckling and localized separation of the sodiated films from their TiN-Ge nanowire support, which is a mechanism of stress-relaxation. Localized horizontal fracture does not occur directly at the interface, but rather at a short distance away within the bulk of the Sb. HIM images of FIB cross sections taken from sodiated half-cells, electrically disconnected, and aged at room temperature, demonstrate nonuniform film swelling and the onset of analogous through-bulk separation. TOF-SIMS highlights time-dependent segregation of Na within the structure, both to the film-current collector interface and to the film surface where a solid electrolyte interphase (SEI) exists, agreeing with the electrochemical impedance results that show time-dependent increase of the films’ charge transfer resistance. We propose that Na segregation serves as a secondary source of stress relief, which occurs over somewhat longer time scales.},
doi = {10.1021/acs.nanolett.5b03373},
journal = {Nano Letters},
number = 10,
volume = 15,
place = {United States},
year = {Mon Sep 21 00:00:00 EDT 2015},
month = {Mon Sep 21 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 81 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Illustration for the setup of the in-situ transmission electron microscopy (TEM) open-cell experiment. (b) Bright field TEM micrograph of a single TiN coated Ge nanowire, with the associated indexed (polycrystalline TiN and single crystal Ge) selected area diffraction pattern being inserted. (c) SEM micrograph of 50 nmmore » Sb on TiN/Ge nanowire, hereafter labeled as 50nmSb/NW. The Sb film fully wets the TiN surface. (d) and (e) HAADF micrograph and XEDS line scan for 50nmSb/NW.« less

Save / Share:

Works referenced in this record:

Addressing the Grand Challenges in Energy Storage
journal, February 2013


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings
journal, January 2012

  • Yao, Yan; Liu, Nian; McDowell, Matthew T.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21437g

Charge carriers in rechargeable batteries: Na ions vs. Li ions
journal, January 2013

  • Hong, Sung You; Kim, Youngjin; Park, Yuwon
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40811f

Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS 2 to Orthorhombic-SnS
journal, July 2014

  • Zhou, Tengfei; Pang, Wei Kong; Zhang, Chaofeng
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn503582c

An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries
journal, November 2014

  • Saubanère, M.; Yahia, M. Ben; Lebègue, S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6559

Advanced Na[Ni 0.25 Fe 0.5 Mn 0.25 ]O 2 /C–Fe 3 O 4 Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage
journal, February 2014

  • Oh, Seung-Min; Myung, Seung-Taek; Yoon, Chong Seung
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl500077v

Atomic Force Microscopy Studies on Molybdenum Disulfide Flakes as Sodium-Ion Anodes
journal, January 2015

  • Lacey, Steven D.; Wan, Jiayu; Cresce, Arthur von Wald
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl503871s

Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries
journal, December 2011

  • Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.
  • Nano Letters, Vol. 11, Issue 12, p. 5421-5425
  • DOI: 10.1021/nl203193q

Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries
journal, October 2014

  • Lee, Hyun-Wook; Wang, Richard Y.; Pasta, Mauro
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6280

A 3.8-V earth-abundant sodium battery electrode
journal, July 2014

  • Barpanda, Prabeer; Oyama, Gosuke; Nishimura, Shin-ichi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5358

Electrochemical intercalation of sodium in graphite
journal, September 1988


Expanded graphite as superior anode for sodium-ion batteries
journal, June 2014

  • Wen, Yang; He, Kai; Zhu, Yujie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5033

Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes
journal, November 2013

  • Ding, Jia; Wang, Huanlei; Li, Zhi
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404640c

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Activation with Li Enables Facile Sodium Storage in Germanium
journal, September 2014

  • Kohandehghan, Alireza; Cui, Kai; Kupsta, Martin
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502812x

Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material
journal, September 2013

  • Abel, Paul R.; Lin, Yong-Mao; de Souza, Tania
  • The Journal of Physical Chemistry C, Vol. 117, Issue 37
  • DOI: 10.1021/jp407322k

Germanium as negative electrode material for sodium-ion batteries
journal, September 2013


Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance
journal, May 2015


High rate SnO2–Graphene Dual Aerogel anodes and their kinetics of lithiation and sodiation
journal, July 2015


Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes
journal, March 2013

  • Liu, Yihang; Xu, Yunhua; Zhu, Yujie
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400601y

Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir
journal, June 2013

  • Zhu, Hongli; Jia, Zheng; Chen, Yuchen
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl400998t

Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction
journal, October 2012

  • Wang, Jiang Wei; Liu, Xiao Hua; Mao, Scott X.
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303305c

Sodiation vs. lithiation phase transformations in a high rate – high stability SnO 2 in carbon nanocomposite
journal, January 2015

  • Ding, Jia; Li, Zhi; Wang, Huanlei
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C5TA00399G

Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys
journal, April 2014

  • Farbod, Behdokht; Cui, Kai; Kalisvaart, W. Peter
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn4063598

Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk
journal, February 2014

  • He, Meng; Kravchyk, Kostiantyn; Walter, Marc
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404165c

Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory
journal, January 2013

  • Baggetto, Loïc; Ganesh, P.; Sun, Che-Nan
  • Journal of Materials Chemistry A, Vol. 1, Issue 27
  • DOI: 10.1039/c3ta11568b

High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
journal, January 2012

  • Qian, Jiangfeng; Chen, Yao; Wu, Lin
  • Chemical Communications, Vol. 48, Issue 56
  • DOI: 10.1039/c2cc32730a

Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries
journal, August 2014

  • Hou, Hongshuai; Jing, Mingjun; Yang, Yingchang
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 18
  • DOI: 10.1021/am504310k

Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode
journal, June 2013

  • Zhu, Yujie; Han, Xiaogang; Xu, Yunhua
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn4025674

High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
journal, December 2013

  • Yu, Denis Y. W.; Prikhodchenko, Petr V.; Mason, Chad W.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3922

Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism
journal, December 2012

  • Darwiche, Ali; Marino, Cyril; Sougrati, Moulay T.
  • Journal of the American Chemical Society, Vol. 134, Issue 51
  • DOI: 10.1021/ja310347x

Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries
journal, April 2014

  • Yu, Denis Y. W.; Hoster, Harry E.; Batabyal, Sudip K.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04562

Cu2Sb thin films as anode for Na-ion batteries
journal, February 2013


AlSb thin films as negative electrodes for Li-ion and Na-ion batteries
journal, December 2013


The reaction mechanism of FeSb2 as anode for sodium-ion batteries
journal, January 2014

  • Baggetto, Loïc; Hah, Hien-Yoong; Johnson, Charles E.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 20
  • DOI: 10.1039/c4cp00738g

Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries
journal, February 2014


Probing the Mechanism of Sodium Ion Insertion into Copper Antimony Cu 2 Sb Anodes
journal, April 2014

  • Baggetto, Loïc; Carroll, Kyler J.; Hah, Hien-Yoong
  • The Journal of Physical Chemistry C, Vol. 118, Issue 15
  • DOI: 10.1021/jp501032d

Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries
journal, January 2013

  • Baggetto, Loïc; Allcorn, Eric; Unocic, Raymond R.
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta12040f

Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries
journal, July 2013


Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries
journal, April 2015


Exotic Reaction Front Migration and Stage Structure in Lithiated Silicon Nanowires
journal, July 2014

  • Wang, Lifen; Liu, Donghua; Yang, Shize
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn502621k

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by in Situ Transmission Electron Microscopy
journal, February 2014

  • Abellan, Patricia; Mehdi, B. Layla; Parent, Lucas R.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404271k

Visualization of Electrode–Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM
journal, March 2014

  • Zeng, Zhiyuan; Liang, Wen-I; Liao, Hong-Gang
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl403922u

Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin
journal, December 2013

  • Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405710w

Probing the Failure Mechanism of SnO 2 Nanowires for Sodium-Ion Batteries
journal, October 2013

  • Gu, Meng; Kushima, Akihiro; Shao, Yuyan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402633n

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO 2 Materials
journal, June 2013

  • Nie, Anmin; Gan, Li-Yong; Cheng, Yingchun
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn402125e

Atomistic Origins of High Rate Capability and Capacity of N-Doped Graphene for Lithium Storage
journal, February 2014

  • Wang, Xi; Weng, Qunhong; Liu, Xizheng
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl4038592

In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers
journal, May 2014

  • Liu, Ying; Fan, Feifei; Wang, Jiangwei
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500970a

In Situ Observation of Random Solid Solution Zone in LiFePO 4 Electrode
journal, June 2014

  • Niu, Junjie; Kushima, Akihiro; Qian, Xiaofeng
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501415b

In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix
journal, August 2012


Anisotropic Lithiation Onset in Silicon Nanoparticle Anode Revealed by in Situ Graphene Liquid Cell Electron Microscopy
journal, June 2014

  • Yuk, Jong Min; Seo, Hyeon Kook; Choi, Jang Wook
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502779n

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer
journal, January 2012

  • Memarzadeh, Elmira L.; Kalisvaart, W. Peter; Kohandehghan, Alireza
  • Journal of Materials Chemistry, Vol. 22, Issue 14
  • DOI: 10.1039/c2jm16167b

The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies
journal, December 2014


Formation of misfit dislocations in nanoscale Ni–Cu bilayer films
journal, March 2004


Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films
journal, October 2005


Surface stress-driven instabilities of a free film
journal, September 2004

  • Kornev, Konstantin G.; Srolovitz, David J.
  • Applied Physics Letters, Vol. 85, Issue 13
  • DOI: 10.1063/1.1795352

Thin Film Nucleation, Growth, and Microstructural Evolution
book, January 2010


A Combinatorial Study of the Sn-Si-C System for Li-Ion Battery Applications
journal, January 2012

  • Al-Maghrabi, M. A.; Thorne, J. S.; Sanderson, R. J.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.075206jes

Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods
journal, May 2010

  • Todd, A. D. W.; Ferguson, P. P.; Fleischauer, M. D.
  • International Journal of Energy Research, Vol. 34, Issue 6
  • DOI: 10.1002/er.1669

Li Segregation Induces Structure and Strength Changes at the Amorphous Si/Cu Interface
journal, September 2013

  • Stournara, Maria E.; Xiao, Xingcheng; Qi, Yue
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl402353k

Stress Contributions to Solution Thermodynamics in Li-Si Alloys
journal, January 2012

  • Sheldon, Brian W.; Soni, Sumit K.; Xiao, Xingcheng
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 1
  • DOI: 10.1149/2.016201esl

Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

Elastic softening of alloy negative electrodes for Na-ion batteries
journal, March 2013


Works referencing / citing this record:

Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium-Ion Batteries
journal, February 2018

  • Xu, Gui-Liang; Amine, Rachid; Abouimrane, Ali
  • Advanced Energy Materials, Vol. 8, Issue 14
  • DOI: 10.1002/aenm.201702403

Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms
journal, January 2016

  • Wang, Xi; Weng, Qunhong; Yang, Yijun
  • Chemical Society Reviews, Vol. 45, Issue 15
  • DOI: 10.1039/c5cs00937e

Liquid-Phase Exfoliated Metallic Antimony Nanosheets toward High Volumetric Sodium Storage
journal, May 2017


Antimonene: From Experimental Preparation to Practical Application
journal, November 2018

  • Wang, Xin; Song, Jun; Qu, Junle
  • Angewandte Chemie International Edition, Vol. 58, Issue 6
  • DOI: 10.1002/anie.201808302

Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes
journal, June 2016


Synthesis of Copper‐Substituted CoS 2 @Cu x S Double‐Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage
journal, January 2020


Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806

A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries
journal, January 2018

  • Yuan, Yating; Jan, Safeer; Wang, Zhiyong
  • Journal of Materials Chemistry A, Vol. 6, Issue 14
  • DOI: 10.1039/c8ta00592c

Double-Walled Sb@TiO 2−x Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion Batteries
journal, February 2016


3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage
journal, June 2019

  • Fan, Xiao‐Yong; Han, Jiaxing; Ding, Yuan‐Li
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201900673

Synthesis of Copper‐Substituted CoS 2 @Cu x S Double‐Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage
journal, February 2020

  • Fang, Yongjin; Luan, Deyan; Chen, Ye
  • Angewandte Chemie International Edition, Vol. 59, Issue 7
  • DOI: 10.1002/anie.201912924

Tailoring MoS 2 Ultrathin Sheets Anchored on Graphene Flexible Supports for Superstable Lithium‐Ion Battery Anodes
journal, August 2019

  • Wang, Tian; Xu, Zhanwei; Yang, Jun
  • Particle & Particle Systems Characterization, Vol. 36, Issue 9
  • DOI: 10.1002/ppsc.201900197

Antimonen: von der experimentellen Herstellung zur praktischen Anwendung
journal, November 2018


Advanced Nanostructured Anode Materials for Sodium-Ion Batteries
journal, September 2017


Formation of Polypyrrole-Coated Sb 2 Se 3 Microclips with Enhanced Sodium-Storage Properties
journal, July 2018

  • Fang, Yongjin; Yu, Xin-Yao; Lou, Xiong Wen David
  • Angewandte Chemie International Edition, Vol. 57, Issue 31
  • DOI: 10.1002/anie.201805552

Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb 2 S 3 Anodes for Sodium Ion Batteries
journal, December 2016

  • Yao, Shanshan; Cui, Jiang; Lu, Ziheng
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201602149

A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes
journal, December 2016

  • Zhao, Yi; Wang, Luyuan Paul; Sougrati, Moulay Tahar
  • Advanced Energy Materials, Vol. 7, Issue 9
  • DOI: 10.1002/aenm.201601424

Antimonene-based flexible photodetector
journal, January 2020

  • Xiao, Qi; Hu, Chen-Xia; Wu, Hao-Ran
  • Nanoscale Horizons, Vol. 5, Issue 1
  • DOI: 10.1039/c9nh00445a

2D Elemental Nanomaterials Beyond Graphene
journal, June 2019


Sb-based electrode materials for rechargeable batteries
journal, January 2018

  • Liu, Zhiming; Song, Taeseup; Paik, Ungyu
  • Journal of Materials Chemistry A, Vol. 6, Issue 18
  • DOI: 10.1039/c8ta01782d

Formation of Polypyrrole-Coated Sb 2 Se 3 Microclips with Enhanced Sodium-Storage Properties
journal, July 2018

  • Fang, Yongjin; Yu, Xin-Yao; Lou, Xiong Wen David
  • Angewandte Chemie, Vol. 130, Issue 31
  • DOI: 10.1002/ange.201805552

Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806