DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Permafrost Stores a Globally Significant Amount of Mercury

Abstract

Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined with maps of soil carbon. We measured a median STHg of 43 ± 30 ng Hg g soil-1 and a median RHgC of 1.6 ± 0.9 μg Hg g C-1, consistent with published results of STHg for tundra soils and 11,000 measurements from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern Hemisphere permafrost regions contain 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is frozen in permafrost. Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions in the global Hg cycle.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3];  [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [3]; ORCiD logo [8]; ORCiD logo [1]; ORCiD logo [9]; ORCiD logo [1];  [10]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [9]
  1. U.S. Geological Survey, Boulder, CO (United States)
  2. Univ. of Colorado, Boulder, CO (United States)
  3. Mercury Research Lab., Middleton, WI (United States)
  4. Environmental Service Lab., Broomfield, CO (United States)
  5. Univ. of Alaska, Fairbanks, AK (United States)
  6. Stockholm Univ. (Sweden)
  7. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  8. Chinese Univ. of Hong Kong (CUHK), Shatin (Hong Kong)
  9. Lanzhou Univ. (China)
  10. Galmont Consulting, Chicago, IL (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1512739
Report Number(s):
LA-UR-17-23053
Journal ID: ISSN 0094-8276
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 45; Journal Issue: 3; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Earth Sciences; permafrost; mercury; storage; thawing

Citation Formats

Schuster, Paul F., Schaefer, Kevin M., Aiken, George R., Antweiler, Ronald C., Dewild, John F., Gryziec, Joshua D., Gusmeroli, Alessio, Hugelius, Gustaf, Jafarov, Elchin, Krabbenhoft, David P., Liu, Lin, Herman‐Mercer, Nicole, Mu, Cuicui, Roth, David A., Schaefer, Tim, Striegl, Robert G., Wickland, Kimberly P., and Zhang, Tingjun. Permafrost Stores a Globally Significant Amount of Mercury. United States: N. p., 2018. Web. doi:10.1002/2017GL075571.
Schuster, Paul F., Schaefer, Kevin M., Aiken, George R., Antweiler, Ronald C., Dewild, John F., Gryziec, Joshua D., Gusmeroli, Alessio, Hugelius, Gustaf, Jafarov, Elchin, Krabbenhoft, David P., Liu, Lin, Herman‐Mercer, Nicole, Mu, Cuicui, Roth, David A., Schaefer, Tim, Striegl, Robert G., Wickland, Kimberly P., & Zhang, Tingjun. Permafrost Stores a Globally Significant Amount of Mercury. United States. https://doi.org/10.1002/2017GL075571
Schuster, Paul F., Schaefer, Kevin M., Aiken, George R., Antweiler, Ronald C., Dewild, John F., Gryziec, Joshua D., Gusmeroli, Alessio, Hugelius, Gustaf, Jafarov, Elchin, Krabbenhoft, David P., Liu, Lin, Herman‐Mercer, Nicole, Mu, Cuicui, Roth, David A., Schaefer, Tim, Striegl, Robert G., Wickland, Kimberly P., and Zhang, Tingjun. Mon . "Permafrost Stores a Globally Significant Amount of Mercury". United States. https://doi.org/10.1002/2017GL075571. https://www.osti.gov/servlets/purl/1512739.
@article{osti_1512739,
title = {Permafrost Stores a Globally Significant Amount of Mercury},
author = {Schuster, Paul F. and Schaefer, Kevin M. and Aiken, George R. and Antweiler, Ronald C. and Dewild, John F. and Gryziec, Joshua D. and Gusmeroli, Alessio and Hugelius, Gustaf and Jafarov, Elchin and Krabbenhoft, David P. and Liu, Lin and Herman‐Mercer, Nicole and Mu, Cuicui and Roth, David A. and Schaefer, Tim and Striegl, Robert G. and Wickland, Kimberly P. and Zhang, Tingjun},
abstractNote = {Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined with maps of soil carbon. We measured a median STHg of 43 ± 30 ng Hg g soil-1 and a median RHgC of 1.6 ± 0.9 μg Hg g C-1, consistent with published results of STHg for tundra soils and 11,000 measurements from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern Hemisphere permafrost regions contain 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is frozen in permafrost. Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions in the global Hg cycle.},
doi = {10.1002/2017GL075571},
journal = {Geophysical Research Letters},
number = 3,
volume = 45,
place = {United States},
year = {Mon Feb 05 00:00:00 EST 2018},
month = {Mon Feb 05 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 175 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Locations of permafrost coring sites (black circles) and sites from other published studies (red circles) superimposed on a map of permafrost regions.

Save / Share:

Works referenced in this record:

Field information links permafrost carbon to physical vulnerabilities of thawing: C AND N VULERABLITIES OF THAWING
journal, August 2012

  • Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL051958

Is there a chronological record of atmospheric mercury and lead deposition preserved in the mor layer (O-horizon) of boreal forest soils?
journal, February 2008

  • Klaminder, Jonatan; Bindler, Richard; Rydberg, Johan
  • Geochimica et Cosmochimica Acta, Vol. 72, Issue 3
  • DOI: 10.1016/j.gca.2007.10.030

Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise
journal, March 2002

  • Lindberg, Steve E.; Brooks, Steve; Lin, C. -J.
  • Environmental Science & Technology, Vol. 36, Issue 6
  • DOI: 10.1021/es0111941

Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau
journal, February 2016

  • Kang, Shichang; Huang, Jie; Wang, Feiyue
  • Environmental Science & Technology, Vol. 50, Issue 6
  • DOI: 10.1021/acs.est.5b04172

Comments OH the Definitions of the Terms Sensitivity and Detection Limit
journal, August 1970


Wildfires threaten mercury stocks in northern soils
journal, January 2006

  • Turetsky, Merritt R.; Harden, Jennifer W.; Friedli, Hans R.
  • Geophysical Research Letters, Vol. 33, Issue 16
  • DOI: 10.1029/2005GL025595

Atmospheric Mercury Deposition during the Last 270 Years:  A Glacial Ice Core Record of Natural and Anthropogenic Sources
journal, June 2002

  • Schuster, Paul F.; Krabbenhoft, David P.; Naftz, David L.
  • Environmental Science & Technology, Vol. 36, Issue 11
  • DOI: 10.1021/es0157503

Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial
journal, July 2014

  • Amos, Helen M.; Jacob, Daniel J.; Kocman, David
  • Environmental Science & Technology, Vol. 48, Issue 16
  • DOI: 10.1021/es502134t

Thermal state of permafrost in North America: a contribution to the international polar year
journal, April 2010

  • Smith, S. L.; Romanovsky, V. E.; Lewkowicz, A. G.
  • Permafrost and Periglacial Processes, Vol. 21, Issue 2
  • DOI: 10.1002/ppp.690

Global mercury emissions to the atmosphere from anthropogenic and natural sources
journal, January 2010

  • Pirrone, N.; Cinnirella, S.; Feng, X.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 13
  • DOI: 10.5194/acp-10-5951-2010

Environmental biogeochemistry of mercury in Antarctic ecosystems
journal, January 2007


Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
journal, July 2017

  • Obrist, Daniel; Agnan, Yannick; Jiskra, Martin
  • Nature, Vol. 547, Issue 7662
  • DOI: 10.1038/nature22997

A mass budget for mercury and methylmercury in the Arctic Ocean: ARCTIC OCEAN HG AND MEHG MASS BUDGET
journal, April 2016

  • Soerensen, Anne L.; Jacob, Daniel J.; Schartup, Amina T.
  • Global Biogeochemical Cycles, Vol. 30, Issue 4
  • DOI: 10.1002/2015GB005280

Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils
journal, October 2014


Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire
journal, October 2015

  • Homann, Peter S.; Darbyshire, Robyn L.; Bormann, Bernard T.
  • Environmental Science & Technology, Vol. 49, Issue 21
  • DOI: 10.1021/acs.est.5b03355

Mercury in the Swedish environment ? Recent research on causes, consequences and corrective methods
journal, January 1991

  • Lindqvist, Oliver; Johansson, Kjell; Bringmark, Lage
  • Water, Air, & Soil Pollution, Vol. 55, Issue 1-2
  • DOI: 10.1007/BF00542429

The importance of volcanic emissions for the global atmospheric mercury cycle
journal, November 2003


Redfield ratios of remineralization determined by nutrient data analysis
journal, March 1994

  • Anderson, Laurence A.; Sarmiento, Jorge L.
  • Global Biogeochemical Cycles, Vol. 8, Issue 1
  • DOI: 10.1029/93GB03318

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Mercury in flux
journal, June 2012

  • Sonke, Jeroen E.; Heimbürger, Lars-Eric
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1508

Global prevalence and distribution of genes and microorganisms involved in mercury methylation
journal, October 2015

  • Podar, Mircea; Gilmour, Cynthia C.; Brandt, Craig C.
  • Science Advances, Vol. 1, Issue 9
  • DOI: 10.1126/sciadv.1500675

Distribution of total mercury and methylmercury in lake sediments in Arctic Ny-Ålesund
journal, May 2011


Mercury Export from the Yukon River Basin and Potential Response to a Changing Climate
journal, November 2011

  • Schuster, Paul F.; Striegl, Robert G.; Aiken, George R.
  • Environmental Science & Technology, Vol. 45, Issue 21
  • DOI: 10.1021/es202068b

Legacy impacts of all-time anthropogenic emissions on the global mercury cycle: GLOBAL IMPACTS OF LEGACY MERCURY
journal, May 2013

  • Amos, Helen M.; Jacob, Daniel J.; Streets, David G.
  • Global Biogeochemical Cycles, Vol. 27, Issue 2
  • DOI: 10.1002/gbc.20040

Observational and Modeling Constraints on Global Anthropogenic Enrichment of Mercury
journal, March 2015

  • Amos, Helen M.; Sonke, Jeroen E.; Obrist, Daniel
  • Environmental Science & Technology, Vol. 49, Issue 7
  • DOI: 10.1021/es5058665

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Global atmospheric model for mercury including oxidation by bromine atoms
journal, January 2010

  • Holmes, C. D.; Jacob, D. J.; Corbitt, E. S.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 24
  • DOI: 10.5194/acp-10-12037-2010

Transport of Hg from Atmospheric mercury depletion events to the mainland of Norway and its possible influence on Hg deposition
journal, January 2008

  • Berg, Torunn; Aspmo, Katrine; Steinnes, Eiliv
  • Geophysical Research Letters, Vol. 35, Issue 9
  • DOI: 10.1029/2008GL033586

Modern and Historic Atmospheric Mercury Fluxes in Northern Alaska:  Global Sources and Arctic Depletion
journal, January 2005

  • Fitzgerald, William F.; Engstrom, Daniel R.; Lamborg, Carl H.
  • Environmental Science & Technology, Vol. 39, Issue 2
  • DOI: 10.1021/es049128x

A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region
journal, January 2013

  • Hugelius, G.; Bockheim, J. G.; Camill, P.
  • Earth System Science Data, Vol. 5, Issue 2
  • DOI: 10.5194/essd-5-393-2013

Riverine source of Arctic Ocean mercury inferred from atmospheric observations
journal, May 2012

  • Fisher, Jenny A.; Jacob, Daniel J.; Soerensen, Anne L.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1478

Mercury distribution in a toposequence of sub-Antarctic forest soils of Tierra del Fuego (Argentina) as consequence of the prevailing soil processes
journal, November 2014


Mercury concentration in natural objects of west Siberia
journal, February 2009

  • Lyapina, E. E.; Golovatskaya, E. A.; Ippolitov, I. I.
  • Contemporary Problems of Ecology, Vol. 2, Issue 1
  • DOI: 10.1134/S1995425509010019

A parameterization of respiration in frozen soils based on substrate availability
journal, January 2016


Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model
journal, January 2010

  • Smith-Downey, Nicole V.; Sunderland, Elsie M.; Jacob, Daniel J.
  • Journal of Geophysical Research, Vol. 115, Issue G3
  • DOI: 10.1029/2009JG001124

Mercury concentration in tree rings of black spruce (Picea mariana Mill. B.S.P.) in boreal Quebec, Canada
journal, March 1995

  • Zhang, Li; Qian, Jun-Long; Planas, Dolors
  • Water, Air, & Soil Pollution, Vol. 81, Issue 1-2
  • DOI: 10.1007/BF00477263

Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes
journal, September 2010


Hair analysis in sled dogs (Canis lupus familiaris) illustrates a linkage of mercury exposure along the Yukon River with human subsistence food systems
journal, October 2007


Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools
journal, January 2013


Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions
journal, October 2005


Vertical distribution of gaseous elemental mercury in Canada: VERTICAL PROFILES OF MERCURY IN CANADA
journal, May 2003

  • Banic, C. M.; Beauchamp, S. T.; Tordon, R. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D9
  • DOI: 10.1029/2002JD002116

Mercury biogeochemical cycling in the ocean and policy implications
journal, November 2012


The impact of over 100 years of wildfires on mercury levels and accumulation rates in two lakes in southern California, USA
journal, August 2009

  • Rothenberg, Sarah E.; Kirby, Matthew E.; Bird, Broxton W.
  • Environmental Earth Sciences, Vol. 60, Issue 5
  • DOI: 10.1007/s12665-009-0238-7

Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment: VEGETATION EFFECTS ON MEHG PRODUCTION
journal, March 2009

  • Windham-Myers, Lisamarie; Marvin-Dipasquale, Mark; Krabbenhoft, David P.
  • Journal of Geophysical Research: Biogeosciences, Vol. 114, Issue G2
  • DOI: 10.1029/2008JG000815

Emissions of forest floor and mineral soil carbon, nitrogen and mercury pools and relationships with fire severity for the Pagami Creek Fire in the Boreal Forest of northern Minnesota
journal, January 2017

  • Kolka, Randall K.; Sturtevant, Brian R.; Miesel, Jessica R.
  • International Journal of Wildland Fire, Vol. 26, Issue 4
  • DOI: 10.1071/WF16128

Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota
journal, January 2017

  • Jonsson, Sofi; Andersson, Agneta; Nilsson, Mats B.
  • Science Advances, Vol. 3, Issue 1
  • DOI: 10.1126/sciadv.1601239

Global mercury emissions to the atmosphere from anthropogenic and natural sources
journal, January 2010

  • Pirrone, N.; Cinnirella, S.; Feng, X.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 2
  • DOI: 10.5194/acpd-10-4719-2010

A parameterization of respiration in frozen soils based on substrate availability
journal, January 2015


The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions
journal, January 2012

  • Hugelius, G.; Tarnocai, C.; Broll, G.
  • Earth System Science Data Discussions, Vol. 5, Issue 2
  • DOI: 10.5194/essdd-5-707-2012

Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution
text, January 2017


Works referencing / citing this record:

Screening‐level risk assessment of methylmercury for non‐anadromous Arctic char ( Salvelinus alpinus )
journal, February 2019

  • Barst, Benjamin D.; Drevnick, Paul E.; Muir, Derek C. G.
  • Environmental Toxicology and Chemistry, Vol. 38, Issue 3
  • DOI: 10.1002/etc.4341

Groundwater hydrogeochemistry in permafrost regions
journal, March 2019

  • Cochand, Marion; Molson, John; Lemieux, Jean‐Michel
  • Permafrost and Periglacial Processes, Vol. 30, Issue 2
  • DOI: 10.1002/ppp.1998

A preliminary assessment of mercury in the feathers of migratory songbirds breeding in the North American subarctic
journal, September 2019


Mercury Sourcing and Sequestration in Weathering Profiles at Six Critical Zone Observatories
journal, October 2018

  • Richardson, Justin B.; Aguirre, Arnulfo A.; Buss, Heather L.
  • Global Biogeochemical Cycles, Vol. 32, Issue 10
  • DOI: 10.1029/2018gb005974

Soil Physical, Hydraulic, and Thermal Properties in Interior Alaska, USA: Implications for Hydrologic Response to Thawing Permafrost Conditions
journal, May 2019

  • Ebel, Brian A.; Koch, Joshua C.; Walvoord, Michelle A.
  • Water Resources Research, Vol. 55, Issue 5
  • DOI: 10.1029/2018wr023673

The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean
journal, May 2020

  • Charette, Matthew A.; Kipp, Lauren E.; Jensen, Laramie T.
  • Journal of Geophysical Research: Oceans, Vol. 125, Issue 5
  • DOI: 10.1029/2019jc015920

Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition
journal, November 2018

  • Saiz-Lopez, Alfonso; Sitkiewicz, Sebastian P.; Roca-Sanjuán, Daniel
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-07075-3

Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic
journal, September 2018

  • Wang, Kang; Munson, Kathleen M.; Beaupré-Laperrière, Alexis
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-32760-0

Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean
journal, November 2018

  • Sonke, Jeroen E.; Teisserenc, Roman; Heimbürger-Boavida, Lars-Eric
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 50
  • DOI: 10.1073/pnas.1811957115

Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat
journal, January 2020

  • Wang, Xun; Luo, Ji; Yuan, Wei
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 4
  • DOI: 10.1073/pnas.1906930117

High Resolution Mapping of Tundra Ecosystems on Victoria Island, Nunavut – Application of a Standardized Terrestrial Ecosystem Classification
journal, September 2019

  • Ponomarenko, Serguei; McLennan, Donald; Pouliot, Darren
  • Canadian Journal of Remote Sensing, Vol. 45, Issue 5
  • DOI: 10.1080/07038992.2019.1682980

Resilience and Adaptation: Yukon River Watershed Contaminant Risk Indicators
journal, October 2018

  • Duffy, Lawrence; De Wilde, La’Ona; Spellman, Katie
  • Scientifica, Vol. 2018
  • DOI: 10.1155/2018/8421513

Mercury distribution in the surface soil of China is potentially driven by precipitation, vegetation cover and organic matter
journal, June 2020


Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China
journal, October 2018


A model of mercury cycling and isotopic fractionation in the ocean
journal, January 2018


Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra
journal, January 2019


Mercury anomalies across the Palaeocene–Eocene Thermal Maximum
journal, January 2019

  • Jones, Morgan T.; Percival, Lawrence M. E.; Stokke, Ella W.
  • Climate of the Past, Vol. 15, Issue 1
  • DOI: 10.5194/cp-15-217-2019

Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition
text, January 2018

  • Saiz-Lopez, Alfonso; Sitkiewicz, Sebastian P.; Roca-Sanjuán, Daniel
  • University of Basel
  • DOI: 10.5451/unibas-ep68581

Insights from mercury stable isotopes on terrestrial-atmosphere exchange of Hg(0) in the Arctic tundra
text, January 2019

  • Jiskra, Martin; Sonke, Jeroen E.; Agnan, Yannick
  • European Geosciences Union (EGU)
  • DOI: 10.5451/unibas-ep73186

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.