DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase

Abstract

Fungal denitrification plays a crucial role in the nitrogen cycle and contributes to the total N2O emission from agricultural soils. Here, cytochrome P450 NO reductase (P450nor) reduces two NO to N2O using a single heme site. Despite much research, the exact nature of the critical "Intermediate I" responsible for the key N-N coupling step in P450nor is unknown. This species likely corresponds to a Fe-NHOH-type intermediate with an unknown electronic structure. Here we report a new strategy to generate a model system for this intermediate, starting from the iron(III) methylhydroxylamide complex [Fe(3,5-Me-BAFP)(NHOMe)] (1), which was fully characterized by 1H NMR, UV-vis, electron paramagnetic resonance, and vibrational spectroscopy (rRaman and NRVS). Our data show that 1 is a high-spin ferric complex with an N-bound hydroxylamide ligand that is strongly coordinated (Fe–N distance, 1.918 Å; Fe-NHOMe stretch, 558 cm–1). Simple one-electron oxidation of 1 at –80 °C then cleanly generates the first model system for Intermediate I, [Fe(3,5-Me-BAFP)(NHOMe)]+ (1+). UV–vis, resonance Raman, and Mössbauer spectroscopies, in comparison to the chloro analogue [Fe(3,5-Me-BAFP)(Cl)]+, demonstrate that 1+ is best described as an FeIII-(NHOMe)• complex with a bound NHOMe radical. Further reactivity studies show that 1+ is highly reactive toward NO, a reaction that likelymore » proceeds via N–N bond formation, following a radical–radical-type coupling mechanism. Here our results therefore provide experimental evidence, for the first time, that an FeIII-(NHOMe)• electronic structure is indeed a reasonable electronic description for Intermediate I and that this electronic structure is advantageous for P450nor catalysis because it can greatly facilitate N–N bond formation and, ultimately, N2O generation.« less

Authors:
 [1];  [2];  [1];  [3];  [3];  [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. The Pennsylvania State Univ., University Park, PA (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1509892
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 58; Journal Issue: 2; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

McQuarters, Ashley B., Blaesi, Elizabeth J., Kampf, Jeff W., Alp, E. Ercan, Zhao, Jiyong, Hu, Michael, Krebs, Carsten, and Lehnert, Nicolai. Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase. United States: N. p., 2019. Web. doi:10.1021/acs.inorgchem.8b02947.
McQuarters, Ashley B., Blaesi, Elizabeth J., Kampf, Jeff W., Alp, E. Ercan, Zhao, Jiyong, Hu, Michael, Krebs, Carsten, & Lehnert, Nicolai. Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase. United States. https://doi.org/10.1021/acs.inorgchem.8b02947
McQuarters, Ashley B., Blaesi, Elizabeth J., Kampf, Jeff W., Alp, E. Ercan, Zhao, Jiyong, Hu, Michael, Krebs, Carsten, and Lehnert, Nicolai. Wed . "Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase". United States. https://doi.org/10.1021/acs.inorgchem.8b02947. https://www.osti.gov/servlets/purl/1509892.
@article{osti_1509892,
title = {Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase},
author = {McQuarters, Ashley B. and Blaesi, Elizabeth J. and Kampf, Jeff W. and Alp, E. Ercan and Zhao, Jiyong and Hu, Michael and Krebs, Carsten and Lehnert, Nicolai},
abstractNote = {Fungal denitrification plays a crucial role in the nitrogen cycle and contributes to the total N2O emission from agricultural soils. Here, cytochrome P450 NO reductase (P450nor) reduces two NO to N2O using a single heme site. Despite much research, the exact nature of the critical "Intermediate I" responsible for the key N-N coupling step in P450nor is unknown. This species likely corresponds to a Fe-NHOH-type intermediate with an unknown electronic structure. Here we report a new strategy to generate a model system for this intermediate, starting from the iron(III) methylhydroxylamide complex [Fe(3,5-Me-BAFP)(NHOMe)] (1), which was fully characterized by 1H NMR, UV-vis, electron paramagnetic resonance, and vibrational spectroscopy (rRaman and NRVS). Our data show that 1 is a high-spin ferric complex with an N-bound hydroxylamide ligand that is strongly coordinated (Fe–N distance, 1.918 Å; Fe-NHOMe stretch, 558 cm–1). Simple one-electron oxidation of 1 at –80 °C then cleanly generates the first model system for Intermediate I, [Fe(3,5-Me-BAFP)(NHOMe)]+ (1+). UV–vis, resonance Raman, and Mössbauer spectroscopies, in comparison to the chloro analogue [Fe(3,5-Me-BAFP)(Cl)]+, demonstrate that 1+ is best described as an FeIII-(NHOMe)• complex with a bound NHOMe radical. Further reactivity studies show that 1+ is highly reactive toward NO, a reaction that likely proceeds via N–N bond formation, following a radical–radical-type coupling mechanism. Here our results therefore provide experimental evidence, for the first time, that an FeIII-(NHOMe)• electronic structure is indeed a reasonable electronic description for Intermediate I and that this electronic structure is advantageous for P450nor catalysis because it can greatly facilitate N–N bond formation and, ultimately, N2O generation.},
doi = {10.1021/acs.inorgchem.8b02947},
journal = {Inorganic Chemistry},
number = 2,
volume = 58,
place = {United States},
year = {Wed Jan 09 00:00:00 EST 2019},
month = {Wed Jan 09 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dissimilatory Nitrite and Nitric Oxide Reductases
journal, January 1996


Cell biology and molecular basis of denitrification.
journal, January 1997


Metal Coordination and Mechanism of Multicopper Nitrite Reductase
journal, July 2000

  • Suzuki, Shinnichiro; Kataoka, Kunishige; Yamaguchi, Kazuya
  • Accounts of Chemical Research, Vol. 33, Issue 10
  • DOI: 10.1021/ar9900257

Reversing nitrogen fixation
journal, September 2018


Alternative Bioenergy: Updates to and Challenges in Nitrification Metalloenzymology
journal, March 2018


How a century of ammonia synthesis changed the world
journal, September 2008

  • Erisman, Jan Willem; Sutton, Mark A.; Galloway, James
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo325

Global Nitrogen: Cycling out of Control
journal, July 2004


Nitrogen cycle enzymology
journal, April 1998


Isotope effects and intermediates in the reduction of NO by P450NOR
journal, February 2002


Distribution, structure and function of fungal nitric oxide reductase P450nor—recent advances
journal, November 2002


Proton Delivery in NO Reduction by Fungal Nitric-oxide Reductase
journal, February 2000

  • Shimizu, Hideaki; Obayashi, Eiji; Gomi, Yuki
  • Journal of Biological Chemistry, Vol. 275, Issue 7
  • DOI: 10.1074/jbc.275.7.4816

Principles of structure, bonding, and reactivity for metal nitrosyl complexes
journal, September 1974


Mechanistic Studies on the Binding of Nitric Oxide to a Synthetic Heme−Thiolate Complex Relevant to Cytochrome P450
journal, April 2005

  • Franke, Alicja; Stochel, Grażyna; Suzuki, Noriyuki
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja047572u

Spectroscopic and Kinetic Studies on Reaction of Cytochrome P450nor with Nitric Oxide: IMPLICATION FOR ITS NITRIC OXIDE REDUCTION MECHANISM
journal, January 1995

  • Shiro, Yoshitsugu; Fujii, Motoyasu; Iizuka, Tetsutaro
  • Journal of Biological Chemistry, Vol. 270, Issue 4
  • DOI: 10.1074/jbc.270.4.1617

Unique Binding of Nitric Oxide to Ferric Nitric Oxide Reductase from Fusarium oxysporum Elucidated with Infrared, Resonance Raman, and X-ray Absorption Spectroscopies
journal, August 1997

  • Obayashi, Eiji; Tsukamoto, Koki; Adachi, Shin-ichi
  • Journal of the American Chemical Society, Vol. 119, Issue 33
  • DOI: 10.1021/ja9637816

Electronic Structure of Reaction Intermediate of Cytochrome P450nor in Its Nitric Oxide Reduction
journal, December 1998

  • Obayashi, Eiji; Takahashi, Satoshi; Shiro, Yoshitsugu
  • Journal of the American Chemical Society, Vol. 120, Issue 49
  • DOI: 10.1021/ja9813764

Electronic structure of iron(II)-porphyrin nitroxyl complexes: Molecular mechanism of fungal nitric oxide reductase (P450nor)
journal, September 2006

  • Lehnert, Nicolai; Praneeth, V. K. K.; Paulat, Florian
  • Journal of Computational Chemistry, Vol. 27, Issue 12
  • DOI: 10.1002/jcc.20400

The Reaction Mechanism of Cytochrome P450 NO Reductase: A Detailed Quantum Mechanics/Molecular Mechanics Study
journal, November 2011


The HNO Adduct of Myoglobin:  Synthesis and Characterization
journal, March 2000

  • Lin, Rong; Farmer, Patrick J.
  • Journal of the American Chemical Society, Vol. 122, Issue 10
  • DOI: 10.1021/ja994079n

Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O in Aqueous Solution
journal, April 1988

  • Buxton, George V.; Greenstock, Clive L.; Helman, W. Phillips
  • Journal of Physical and Chemical Reference Data, Vol. 17, Issue 2
  • DOI: 10.1063/1.555805

Recent advances in bioinorganic spectroscopy
journal, April 2001

  • Lehnert, Nicolai; George, Serena DeBeer; Solomon, Edward I.
  • Current Opinion in Chemical Biology, Vol. 5, Issue 2
  • DOI: 10.1016/S1367-5931(00)00188-5

The geometry of displacements at nonstereogenic atoms: the formal displacement of alkoxide from alkoxyamines by organolithium reagents
journal, September 1986

  • Beak, Peter.; Basha, Anwer.; Kokko, Bruce.
  • Journal of the American Chemical Society, Vol. 108, Issue 19
  • DOI: 10.1021/ja00279a058

Electronic Structure and Biologically Relevant Reactivity of Low-Spin {FeNO} 8 Porphyrin Model Complexes: New Insight from a Bis-Picket Fence Porphyrin
journal, June 2013

  • Goodrich, Lauren E.; Roy, Saikat; Alp, E. Ercan
  • Inorganic Chemistry, Vol. 52, Issue 13
  • DOI: 10.1021/ic400977h

Disproportionation of O-Benzylhydroxylamine Catalyzed by a Ferric Bis-Picket Fence Porphyrin Complex
journal, May 2013

  • McQuarters, Ashley B.; Goodrich, Lauren E.; Goodrich, Claire M.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 639, Issue 8-9
  • DOI: 10.1002/zaac.201300125

On the preparation of metalloporphyrins
journal, July 1970

  • Adler, Alan D.; Longo, Frederick R.; Kampas, Frank
  • Journal of Inorganic and Nuclear Chemistry, Vol. 32, Issue 7
  • DOI: 10.1016/0022-1902(70)80535-8

Ferric Heme-Nitrosyl Complexes: Kinetically Robust or Unstable Intermediates?
journal, August 2017


Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight from Nuclear Resonance Vibrational Spectroscopy
journal, November 2008

  • Paulat, Florian; Berto, Timothy C.; DeBeer George, Serena
  • Inorganic Chemistry, Vol. 47, Issue 24
  • DOI: 10.1021/ic801626w

Nuclear resonance vibrational spectroscopy of a protein active-site mimic
journal, August 2001


CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data
journal, March 2000


Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

Nitric oxide synthase is a cytochrome P-450 type hemoprotein
journal, July 1992

  • White, Kimberly A.; Marletta, Michael A.
  • Biochemistry, Vol. 31, Issue 29
  • DOI: 10.1021/bi00144a001

Five- to Six-Coordination in (Nitrosyl)iron(II) Porphyrinates:  Effects of Binding the Sixth Ligand
journal, September 2003

  • Wyllie, Graeme R. A.; Schulz, Charles E.; Scheidt, W. Robert
  • Inorganic Chemistry, Vol. 42, Issue 18
  • DOI: 10.1021/ic034473t

Preparation of the Elusive [(por)Fe(NO)(O-ligand)] Complex by Diffusion of Nitric Oxide into a Crystal of the Precursor
journal, March 2013

  • Xu, Nan; Goodrich, Lauren E.; Lehnert, Nicolai
  • Angewandte Chemie International Edition, Vol. 52, Issue 14
  • DOI: 10.1002/anie.201208063

The first structurally characterized nitrosyl heme thiolate model complex
journal, January 2006

  • Xu, Nan; Powell, Douglas R.; Cheng, Lin
  • Chemical Communications, Issue 19
  • DOI: 10.1039/b602611g

�ber die Bildung von Hyponitrit durch Disproportionierung des Hydroxylamins
journal, August 1950

  • Nast, R.; F�ppl, I.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 263, Issue 5-6
  • DOI: 10.1002/zaac.19502630511

Properties of nitroxyl as intermediate in the nitric oxide-hydroxylamine reaction and in trioxodinitrate decomposition
journal, September 1978

  • Bonner, Francis T.; Dzelzkalns, Laila S.; Bonucci, John A.
  • Inorganic Chemistry, Vol. 17, Issue 9
  • DOI: 10.1021/ic50187a030

Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds
journal, January 2010


Electrochemical and spectroscopic studies of iron porphyrin nitrosyls and their reduction products
journal, April 1991

  • Choi, In Kyu; Liu, Yanming; Feng, DiWei
  • Inorganic Chemistry, Vol. 30, Issue 8
  • DOI: 10.1021/ic00008a028

New five- and six-coordinate imidazole and imidazolate complexes of ferric tetraphenylporphyrin
journal, May 1982

  • Quinn, Robert; Nappa, Mario; Valentine, Joan S.
  • Journal of the American Chemical Society, Vol. 104, Issue 9
  • DOI: 10.1021/ja00373a042

Magnetic resonance investigation of the autoreduction of tetraphenylporphinatoiron(III) chloride in the presence of piperidine
journal, February 1978

  • Del Gaudio, John; La Mar, Gerd N.
  • Journal of the American Chemical Society, Vol. 100, Issue 4
  • DOI: 10.1021/ja00472a015

Electronic structure of metalloporphyrins. 2. Experimental electron density distribution of (meso-tetraphenylporphinato)iron(III) methoxide
journal, October 1983

  • Lecomte, Claude; Chadwick, Dana L.; Coppens, Philip
  • Inorganic Chemistry, Vol. 22, Issue 21
  • DOI: 10.1021/ic00163a003

Dynamics of NO Motion in Solid-State [Co(tetraphenylporphinato)(NO)]
journal, June 2010

  • Grande, Laura M.; Noll, Bruce C.; Oliver, Allen G.
  • Inorganic Chemistry, Vol. 49, Issue 14
  • DOI: 10.1021/ic1003462

Spin-state/stereochemical relationships in iron porphyrins: implications for the hemoproteins
journal, December 1981

  • Scheidt, W. Robert; Reed, Christopher A.
  • Chemical Reviews, Vol. 81, Issue 6
  • DOI: 10.1021/cr00046a002

Nuclear resonance vibrational spectroscopy ? NRVS
journal, January 2005


Iron normal mode dynamics in a porphyrin-imidazole model for deoxyheme proteins
journal, November 2002


Characterization of the Bridged Hyponitrite Complex {[Fe(OEP)] 2 (μ-N 2 O 2 )}: Reactivity of Hyponitrite Complexes and Biological Relevance
journal, June 2014

  • Berto, Timothy C.; Xu, Nan; Lee, Se Ryeon
  • Inorganic Chemistry, Vol. 53, Issue 13
  • DOI: 10.1021/ic5002573

Iron(IV) porphyrins
journal, November 1971

  • Felton, R. H.; Owen, G. S.; Dolphin, D.
  • Journal of the American Chemical Society, Vol. 93, Issue 23
  • DOI: 10.1021/ja00752a091

Electrochemical synthesis and characterization of the single-electron oxidation products of ferric porphyrins
journal, November 1982

  • Phillippi, Martin A.; Goff, Harold M.
  • Journal of the American Chemical Society, Vol. 104, Issue 22
  • DOI: 10.1021/ja00386a031

Chemical Redox Agents for Organometallic Chemistry
journal, January 1996

  • Connelly, Neil G.; Geiger, William E.
  • Chemical Reviews, Vol. 96, Issue 2
  • DOI: 10.1021/cr940053x

Detailed Assignment of the Magnetic Circular Dichroism and UV−vis Spectra of Five-Coordinate High-Spin Ferric [Fe(TPP)(Cl)]
journal, June 2008

  • Paulat, Florian; Lehnert, Nicolai
  • Inorganic Chemistry, Vol. 47, Issue 11
  • DOI: 10.1021/ic8002838

NMR studies on the electronic structure of one-electron oxidized complexes of iron(III) porphyrinates
journal, August 2009

  • Ikezaki, Akira; Ohgo, Yoshiki; Nakamura, Mikio
  • Coordination Chemistry Reviews, Vol. 253, Issue 15-16
  • DOI: 10.1016/j.ccr.2009.01.003

Oxidation of Ferric Porphyrins
journal, October 1973


Preparation of solid thianthrene cation radical tetrafluoroborate
journal, October 1988

  • Boduszek, Bogdan; Shine, Henry J.
  • The Journal of Organic Chemistry, Vol. 53, Issue 21
  • DOI: 10.1021/jo00256a042

O-Nitrene and O-nitrenium cation intermediates in reactions of O-substituted hydroxylamines
journal, September 1973

  • Carey, Francis A.; Hayes, Larry J.
  • The Journal of Organic Chemistry, Vol. 38, Issue 18
  • DOI: 10.1021/jo00958a009

Kinetic applications of electron paramagnetic resonance spectroscopy. 28. N-Alkoxy-N-alkylamino, N-alkoxyamino, and N-alkoxyanilino radicals
journal, October 1976

  • Kaba, R. A.; Ingold, K. U.
  • Journal of the American Chemical Society, Vol. 98, Issue 23
  • DOI: 10.1021/ja00439a045

Kinetic applications of electron paramagnetic resonance spectroscopy. XIV. 1,1-Dialkylhydrazyl radicals
journal, June 1974

  • Malatesta, V.; Ingold, K. U.
  • Journal of the American Chemical Society, Vol. 96, Issue 12
  • DOI: 10.1021/ja00819a036

A Positively Charged Cluster Formed in the Heme-distal Pocket of Cytochrome P450nor Is Essential for Interaction with NADH
journal, February 2001

  • Kudo, Takashi; Takaya, Naoki; Park, Sam-Yong
  • Journal of Biological Chemistry, Vol. 276, Issue 7
  • DOI: 10.1074/jbc.M007244200

Structure-sensitive resonance Raman bands of tetraphenyl and "picket fence" porphyrin-iron complexes, including an oxyhemoglobin analog
journal, September 1978

  • Burke, J. M.; Kincaid, J. R.; Peters, S.
  • Journal of the American Chemical Society, Vol. 100, Issue 19
  • DOI: 10.1021/ja00487a018

Quantum Chemistry-Based Analysis of the Vibrational Spectra of Five-Coordinate Metalloporphyrins [M(TPP)Cl]
journal, April 2006

  • Paulat, Florian; Praneeth, V. K. K.; Näther, Christian
  • Inorganic Chemistry, Vol. 45, Issue 7
  • DOI: 10.1021/ic0510866

Combined Spectroscopic and Topographic Characterization of Nanoscale Domains and Their Distributions of a Redox Protein on Bacterial Cell Surfaces
journal, January 2007

  • Biju, Vasudevanpillai; Pan, Duohai; Gorby, Yuri A.
  • Langmuir, Vol. 23, Issue 3
  • DOI: 10.1021/la061343z

Valence tautomerism in synthetic models of cytochrome P450
journal, June 2016

  • Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 24
  • DOI: 10.1073/pnas.1600525113

Moessbauer spectra of some porphyrin complexes with pyridine, piperidine, and imidazole
journal, September 1967

  • Epstein, Lawrence M.; Straub, Darel K.; Maricondi, C.
  • Inorganic Chemistry, Vol. 6, Issue 9
  • DOI: 10.1021/ic50055a024

Moessbauer and electron paramagnetic resonance studies of horseradish peroxidase and its catalytic intermediates
journal, September 1984

  • Schulz, C. E.; Rutter, R.; Sage, J. T.
  • Biochemistry, Vol. 23, Issue 20
  • DOI: 10.1021/bi00315a033

Cytochrome P450 Compound I: Capture, Characterization, and C-H Bond Activation Kinetics
journal, November 2010


Evidence for Two Ferryl Species in Chloroperoxidase Compound II
journal, May 2006

  • Stone, Kari L.; Hoffart, Lee M.; Behan, Rachel K.
  • Journal of the American Chemical Society, Vol. 128, Issue 18
  • DOI: 10.1021/ja057876w

The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases
journal, February 2018

  • White, Corey J.; Speelman, Amy L.; Kupper, Claudia
  • Journal of the American Chemical Society, Vol. 140, Issue 7
  • DOI: 10.1021/jacs.7b11464

Hydride Attack on a Coordinated Ferric Nitrosyl: Experimental and DFT Evidence for the Formation of a Heme Model–HNO Derivative
journal, December 2015

  • Abucayon, Erwin G.; Khade, Rahul L.; Powell, Douglas R.
  • Journal of the American Chemical Society, Vol. 138, Issue 1
  • DOI: 10.1021/jacs.5b12008

Over or under: hydride attack at the metal versus the coordinated nitrosyl ligand in ferric nitrosyl porphyrins
journal, January 2016

  • Abucayon, E. G.; Khade, R. L.; Powell, D. R.
  • Dalton Transactions, Vol. 45, Issue 45
  • DOI: 10.1039/C6DT03860C