DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallography

Abstract

Glycoside hydrolases (GHs) commonly use the retaining or inverting mechanisms to hydrolyze carbohydrates, and the rates of catalysis are usually pH dependent. Deeper understanding of these pH-dependent reaction mechanisms is of great importance for protein engineering and drug design. We used high-resolution X-ray crystallography to analyze the sugar ring configurations of an oligosaccharide ligand during hydrolysis for the family 11 GH, and the results support the 1S34H34C1 conformational itinerary. These results indicate that sugar ring flexibility may help to distort and break the glycosidic bond. Constant pH molecular dynamics simulations and neutron crystallography demonstrate that the catalytic glutamate residue (E177) has alternate conformational changes to transfer a proton to cleave the glycosidic bond. Furthermore, a neutron crystallography analysis shows that the H-bond length between E177 and its nearby tyrosine residue (Y88) is shortened when the pH increases, preventing E177 from rotating downward and obtaining a proton from the solvent for catalysis. This result indicates that the H-bond length variation may play a key role in the pH-dependent reaction mechanism. Here, our results demonstrate that both sugar ring flexibility and protein dynamics are important in the pH-dependent reaction mechanism and may help to engineer GHs with differentmore » pH optima.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3];  [4]; ORCiD logo [1]
  1. Nanjing Agricultural Univ., Nanjing (People’s Republic of China)
  2. Forschungszentrum Jülich GmbH, Garching (Germany)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Jimei Univ., Xiamen (People’s Republic of China)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1509581
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 9; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; constant pH molecular dynamics; glycoside hydrolase; H-bond length; neutron crystallography; pH-dependent reaction mechanism

Citation Formats

Li, Zhihong, Zhang, Xiaoshuai, Wang, Qingqing, Li, Chunran, Zhang, Nianying, Zhang, Xinkai, Xu, Birui, Ma, Baoliang, Schrader, Tobias E., Coates, Leighton, Kovalevsky, Andrey, Huang, Yandong, and Wan, Qun. Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallography. United States: N. p., 2018. Web. doi:10.1021/acscatal.8b01472.
Li, Zhihong, Zhang, Xiaoshuai, Wang, Qingqing, Li, Chunran, Zhang, Nianying, Zhang, Xinkai, Xu, Birui, Ma, Baoliang, Schrader, Tobias E., Coates, Leighton, Kovalevsky, Andrey, Huang, Yandong, & Wan, Qun. Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallography. United States. https://doi.org/10.1021/acscatal.8b01472
Li, Zhihong, Zhang, Xiaoshuai, Wang, Qingqing, Li, Chunran, Zhang, Nianying, Zhang, Xinkai, Xu, Birui, Ma, Baoliang, Schrader, Tobias E., Coates, Leighton, Kovalevsky, Andrey, Huang, Yandong, and Wan, Qun. Wed . "Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallography". United States. https://doi.org/10.1021/acscatal.8b01472. https://www.osti.gov/servlets/purl/1509581.
@article{osti_1509581,
title = {Understanding the pH-Dependent Reaction Mechanism of a Glycoside Hydrolase Using High-Resolution X-ray and Neutron Crystallography},
author = {Li, Zhihong and Zhang, Xiaoshuai and Wang, Qingqing and Li, Chunran and Zhang, Nianying and Zhang, Xinkai and Xu, Birui and Ma, Baoliang and Schrader, Tobias E. and Coates, Leighton and Kovalevsky, Andrey and Huang, Yandong and Wan, Qun},
abstractNote = {Glycoside hydrolases (GHs) commonly use the retaining or inverting mechanisms to hydrolyze carbohydrates, and the rates of catalysis are usually pH dependent. Deeper understanding of these pH-dependent reaction mechanisms is of great importance for protein engineering and drug design. We used high-resolution X-ray crystallography to analyze the sugar ring configurations of an oligosaccharide ligand during hydrolysis for the family 11 GH, and the results support the 1S3 → 4H3 → 4C1 conformational itinerary. These results indicate that sugar ring flexibility may help to distort and break the glycosidic bond. Constant pH molecular dynamics simulations and neutron crystallography demonstrate that the catalytic glutamate residue (E177) has alternate conformational changes to transfer a proton to cleave the glycosidic bond. Furthermore, a neutron crystallography analysis shows that the H-bond length between E177 and its nearby tyrosine residue (Y88) is shortened when the pH increases, preventing E177 from rotating downward and obtaining a proton from the solvent for catalysis. This result indicates that the H-bond length variation may play a key role in the pH-dependent reaction mechanism. Here, our results demonstrate that both sugar ring flexibility and protein dynamics are important in the pH-dependent reaction mechanism and may help to engineer GHs with different pH optima.},
doi = {10.1021/acscatal.8b01472},
journal = {ACS Catalysis},
number = 9,
volume = 8,
place = {United States},
year = {Wed Jul 18 00:00:00 EDT 2018},
month = {Wed Jul 18 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Glycosidase mechanisms
journal, October 2000


Glycosidase mechanisms
journal, October 2002


Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications.
journal, January 1988


X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism
journal, December 2013

  • Wan, Qun; Zhang, Qiu; Hamilton-Brehm, Scott
  • Acta Crystallographica Section D Biological Crystallography, Vol. 70, Issue 1
  • DOI: 10.1107/S1399004713023626

The complete conformational free energy landscape of β-xylose reveals a two-fold catalytic itinerary for β-xylanases
journal, January 2015

  • Iglesias-Fernández, Javier; Raich, Lluís; Ardèvol, Albert
  • Chemical Science, Vol. 6, Issue 2
  • DOI: 10.1039/C4SC02240H

Exploring new strategies for cellulosic biofuels production
journal, January 2011

  • Langan, Paul; Gnanakaran, S.; Rector, Kirk D.
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01268a

Structural Comparison of Two Major endo-1,4-Xylanases from Trichoderma reesei
journal, January 1995


Xylanases from fungi: properties and industrial applications
journal, January 2005

  • Polizeli, M. L. T. M.; Rizzatti, A. C. S.; Monti, R.
  • Applied Microbiology and Biotechnology, Vol. 67, Issue 5
  • DOI: 10.1007/s00253-005-1904-7

Structure of an orthorhombic form of xylanase II from Trichoderma reesei and analysis of thermal displacement
journal, June 2006

  • Watanabe, Nobuhiko; Akiba, Toshihiko; Kanai, Ryuta
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 7
  • DOI: 10.1107/S0907444906017379

Dissecting the Electrostatic Interactions and pH-Dependent Activity of a Family 11 Glycosidase ,
journal, August 2001

  • Joshi, Manish D.; Sidhu, Gary; Nielsen, Jens E.
  • Biochemistry, Vol. 40, Issue 34
  • DOI: 10.1021/bi0105429

Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30
journal, February 2004


Predicting Catalytic Proton Donors and Nucleophiles in Enzymes: How Adding Dynamics Helps Elucidate the Structure–Function Relationships
journal, February 2018

  • Huang, Yandong; Yue, Zhi; Tsai, Cheng-Chieh
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 6
  • DOI: 10.1021/acs.jpclett.8b00238

Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography
journal, September 2015

  • Wan, Qun; Parks, Jerry M.; Hanson, B. Leif
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 40
  • DOI: 10.1073/pnas.1504986112

Neutron protein crystallography: A complementary tool for locating hydrogens in proteins
journal, July 2016

  • O'Dell, William B.; Bodenheimer, Annette M.; Meilleur, Flora
  • Archives of Biochemistry and Biophysics, Vol. 602
  • DOI: 10.1016/j.abb.2015.11.033

Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography
journal, January 2017


Preliminary joint X-ray and neutron protein crystallographic studies of endoxylanase II from the fungus Trichoderma longibrachiatum
journal, January 2011

  • Kovalevsky, Andrey Y.; Hanson, B. Leif; Seaver, Sean
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 67, Issue 2
  • DOI: 10.1107/S174430911005075X

[16] Purification of proteins using polyhistidine affinity tags
book, January 2000


Interlaboratory testing of methods for assay of xylanase activity
journal, May 1992

  • Bailey, Michael J.; Biely, Peter; Poutanen, Kaisa
  • Journal of Biotechnology, Vol. 23, Issue 3, p. 257-270
  • DOI: 10.1016/0168-1656(92)90074-J

HKL -3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes
journal, July 2006

  • Minor, Wladek; Cymborowski, Marcin; Otwinowski, Zbyszek
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 8
  • DOI: 10.1107/S0907444906019949

Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
journal, November 2004

  • Krissinel, E.; Henrick, K.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12
  • DOI: 10.1107/S0907444904026460

electronic Ligand Builder and Optimization Workbench ( eLBOW ): a tool for ligand coordinate and restraint generation
journal, September 2009

  • Moriarty, Nigel W.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 10
  • DOI: 10.1107/S0907444909029436

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Stereographic representation of the cremer-pople ring-puckering parameters for pyranoid rings
journal, September 1979


H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations
journal, May 2012

  • Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V.
  • Nucleic Acids Research, Vol. 40, Issue W1
  • DOI: 10.1093/nar/gks375

Extensive Assessment of Various Computational Methods for Aspartate’s p K a Shift
journal, June 2017

  • Sun, Zhaoxi; Wang, Xiaohui; Song, Jianing
  • Journal of Chemical Information and Modeling, Vol. 57, Issue 7
  • DOI: 10.1021/acs.jcim.7b00177

Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation
journal, January 2018


Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange
journal, July 2011

  • Wallace, Jason A.; Shen, Jana K.
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 8
  • DOI: 10.1021/ct200146j

CHARMM: The biomolecular simulation program
journal, July 2009

  • Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.
  • Journal of Computational Chemistry, Vol. 30, Issue 10
  • DOI: 10.1002/jcc.21287

All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins
journal, April 1998

  • MacKerell, A. D.; Bashford, D.; Bellott, M.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 18
  • DOI: 10.1021/jp973084f

[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site
journal, March 2016

  • Gerlits, Oksana; Wymore, Troy; Das, Amit
  • Angewandte Chemie International Edition, Vol. 55, Issue 16
  • DOI: 10.1002/anie.201509989

Low-barrier hydrogen bonds in proteins
journal, January 2013


Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry
journal, July 2004

  • Zolotnitsky, G.; Cogan, U.; Adir, N.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 31
  • DOI: 10.1073/pnas.0404311101

Uncovering pH-Dependent Transient States of Proteins with Buried Ionizable Residues
journal, June 2014

  • Goh, Garrett B.; Laricheva, Elena N.; Brooks, Charles L.
  • Journal of the American Chemical Society, Vol. 136, Issue 24
  • DOI: 10.1021/ja5012564

Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion
journal, February 2015

  • Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 7
  • DOI: 10.1073/pnas.1414190112

Mechanism of pH-dependent activation of the sodium-proton antiporter NhaA
journal, October 2016

  • Huang, Yandong; Chen, Wei; Dotson, David L.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12940