DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Analysis of Opal in Gale Crater, Mars

Abstract

Silica enrichments resulting in up to ~90 wt% SiO2 have been observed by the Curiosity rover's instruments in Gale crater, Mars, within the Murray and Stimson formations. Samples acquired by the rover drill revealed a significant abundance of an X–ray amorphous silica phase. Laser–induced breakdown spectroscopy (LIBS) highlights an overall correlation of the hydrogen signal with silica content for these Si–enriched targets. The increased hydration of the high–silica rocks compared to the surrounding bedrock is also confirmed by active neutron spectroscopy. Laboratory LIBS experiments have been performed to calibrate the hydrogen signal and show that the correlation observed on Mars is consistent with a silica phase containing on average 6.3 ± 1.4 wt% water. X–ray diffraction and LIBS measurements indicate that opal–A, amorphous hydrated silica, is the most likely phase containing this water in the rocks. Pyrolysis experiments were also performed on drilled samples by the Sample Analysis at Mars (SAM) instrument to measure volatile content, but the data suggests that most of the water was released during handling prior to pyrolysis. Furthermore the inferred low–temperature release of water helps constrain the nature of the opal. Given the geological context and the spatial association with other phases such as calciummore » sulfates, the opal was likely formed from multiple diagenetic fluid events and possibly represents the latest significant water–rock interaction in these sedimentary rocks.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [5];  [6]; ORCiD logo [7];  [4]; ORCiD logo [6];  [8]; ORCiD logo [9]; ORCiD logo [10];  [11]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  2. Univ. of Technology, Sydney, NSW (Australia); Dr. Eduard Gübelin Association for Research and Identification of Precious Stones, Lucerne (Switzerland)
  3. Arizona State Univ., Tempe, AZ (United States)
  4. NASA Goddard Space Flight Center, Greenbelt, MD (United States)
  5. Univ. de Toulouse, Toulouse (France)
  6. Univ. de Nantes, Nantes (France)
  7. Univ. de Toulouse, Toulouse (France); Univ. de Lyon, Villeurbanne (France)
  8. Chesapeake Energy, Oklahoma City, OK (United States)
  9. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  10. Univ. of Copenhagen, Copenhagen (Denmark)
  11. Univ. de Toulouse, Toulouse (France); Institut fur Optische Sensorysysteme, Berlin-Adlershof (Germany)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Aeronautics and Space Administration (NASA); USDOE
OSTI Identifier:
1508550
Report Number(s):
LA-UR-18-28850
Journal ID: ISSN 2169-9097
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Planets
Additional Journal Information:
Journal Volume: 123; Journal Issue: 8; Journal ID: ISSN 2169-9097
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Planetary Sciences; opal; Mars; MSL; Gale crater; hydrogen; water

Citation Formats

Rapin, W., Chauviré, B., Gabriel, T. S. J., McAdam, A. C., Ehlmann, Bethany L., Hardgrove, C., Meslin, P. -Y., Rondeau, B., Dehouck, E., Franz, H. B., Mangold, N., Chipera, S. J., Wiens, Roger Craig, Frydenvang, J., and Schröder, S. In Situ Analysis of Opal in Gale Crater, Mars. United States: N. p., 2018. Web. doi:10.1029/2017JE005483.
Rapin, W., Chauviré, B., Gabriel, T. S. J., McAdam, A. C., Ehlmann, Bethany L., Hardgrove, C., Meslin, P. -Y., Rondeau, B., Dehouck, E., Franz, H. B., Mangold, N., Chipera, S. J., Wiens, Roger Craig, Frydenvang, J., & Schröder, S. In Situ Analysis of Opal in Gale Crater, Mars. United States. https://doi.org/10.1029/2017JE005483
Rapin, W., Chauviré, B., Gabriel, T. S. J., McAdam, A. C., Ehlmann, Bethany L., Hardgrove, C., Meslin, P. -Y., Rondeau, B., Dehouck, E., Franz, H. B., Mangold, N., Chipera, S. J., Wiens, Roger Craig, Frydenvang, J., and Schröder, S. Tue . "In Situ Analysis of Opal in Gale Crater, Mars". United States. https://doi.org/10.1029/2017JE005483. https://www.osti.gov/servlets/purl/1508550.
@article{osti_1508550,
title = {In Situ Analysis of Opal in Gale Crater, Mars},
author = {Rapin, W. and Chauviré, B. and Gabriel, T. S. J. and McAdam, A. C. and Ehlmann, Bethany L. and Hardgrove, C. and Meslin, P. -Y. and Rondeau, B. and Dehouck, E. and Franz, H. B. and Mangold, N. and Chipera, S. J. and Wiens, Roger Craig and Frydenvang, J. and Schröder, S.},
abstractNote = {Silica enrichments resulting in up to ~90 wt% SiO2 have been observed by the Curiosity rover's instruments in Gale crater, Mars, within the Murray and Stimson formations. Samples acquired by the rover drill revealed a significant abundance of an X–ray amorphous silica phase. Laser–induced breakdown spectroscopy (LIBS) highlights an overall correlation of the hydrogen signal with silica content for these Si–enriched targets. The increased hydration of the high–silica rocks compared to the surrounding bedrock is also confirmed by active neutron spectroscopy. Laboratory LIBS experiments have been performed to calibrate the hydrogen signal and show that the correlation observed on Mars is consistent with a silica phase containing on average 6.3 ± 1.4 wt% water. X–ray diffraction and LIBS measurements indicate that opal–A, amorphous hydrated silica, is the most likely phase containing this water in the rocks. Pyrolysis experiments were also performed on drilled samples by the Sample Analysis at Mars (SAM) instrument to measure volatile content, but the data suggests that most of the water was released during handling prior to pyrolysis. Furthermore the inferred low–temperature release of water helps constrain the nature of the opal. Given the geological context and the spatial association with other phases such as calcium sulfates, the opal was likely formed from multiple diagenetic fluid events and possibly represents the latest significant water–rock interaction in these sedimentary rocks.},
doi = {10.1029/2017JE005483},
journal = {Journal of Geophysical Research. Planets},
number = 8,
volume = 123,
place = {United States},
year = {Tue Jul 03 00:00:00 EDT 2018},
month = {Tue Jul 03 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Water Content of Opal-A: Implications for the Origin of Laminae in Geyserite and Sinter
journal, January 2004

  • Jones, B.; Renaut, R. W.
  • Journal of Sedimentary Research, Vol. 74, Issue 1
  • DOI: 10.1306/052403740117

Opalisation of the Great Artesian Basin (central Australia): an Australian story with a Martian twist
journal, April 2013


Modeling calcium sulfate chemistries with applications to Mars
journal, November 2016


NMR, XRD and IR study on microcrystalline opals
journal, July 1994

  • Graetsch, H.; Gies, H.; Topalović, I.
  • Physics and Chemistry of Minerals, Vol. 21, Issue 3
  • DOI: 10.1007/BF00203147

The Sample Analysis at Mars Investigation and Instrument Suite
journal, April 2012

  • Mahaffy, Paul R.; Webster, Christopher R.; Cabane, Michel
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9879-z

Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM
journal, July 2014

  • Seelos, Kimberly D.; Seelos, Frank P.; Viviano-Beck, Christina E.
  • Geophysical Research Letters, Vol. 41, Issue 14
  • DOI: 10.1002/2014GL060310

Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars
journal, January 2017


Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars
journal, August 2017


Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation: MINERALOGY OF OUTCROP AT MERIDIANI PLANUM
journal, September 2006

  • Glotch, Timothy D.; Bandfield, Joshua L.; Christensen, Philip R.
  • Journal of Geophysical Research: Planets, Vol. 111, Issue E12
  • DOI: 10.1029/2005JE002672

ChemCam: Chemostratigraphy by the First Mars Microprobe
journal, February 2015


Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration
journal, January 2009

  • Ehlmann, Bethany L.; Mustard, John F.; Swayze, Gregg A.
  • Journal of Geophysical Research, Vol. 114
  • DOI: 10.1029/2009JE003339

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
journal, September 2013


Quantification of water content by laser induced breakdown spectroscopy on Mars
journal, April 2017

  • Rapin, W.; Meslin, P. -Y.; Maurice, S.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 130
  • DOI: 10.1016/j.sab.2017.02.007

Estimation of the diffusion coefficient of water evolved during the non-isothermal dehydration of Australian sedimentary opal
journal, April 2007

  • Thomas, P. S.; Šimon, P.; Smallwood, A.
  • Journal of Thermal Analysis and Calorimetry, Vol. 88, Issue 1
  • DOI: 10.1007/s10973-006-8133-x

Interpretation of palaeoweathering features and successive silicifications in the Tertiary regolith of inland Australia
journal, July 2006

  • Thiry, Médard; Milnes, Anthony R.; Rayot, Véronique
  • Journal of the Geological Society, Vol. 163, Issue 4
  • DOI: 10.1144/0014-764905-020

Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data
journal, August 2011


New isotopic temperature estimates for early silica diagenesis in bedded cherts
journal, January 1993


H 2 O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion
journal, November 1999


Water in microcrystalline quartz of volcanic origin: Agates
journal, January 1982

  • Fl�rke, O. W.; K�hler-Herbertz, B.; Langer, K.
  • Contributions to Mineralogy and Petrology, Vol. 80, Issue 4
  • DOI: 10.1007/BF00378005

Common gem opal: An investigation of micro- to nano-structure
journal, November 2008

  • Gaillou, E.; Fritsch, E.; Aguilar-Reyes, B.
  • American Mineralogist, Vol. 93, Issue 11-12
  • DOI: 10.2138/am.2008.2518

Hydrated silica on Mars: Combined analysis with near-infrared and thermal-infrared spectroscopy
journal, April 2013


Evidence for Amazonian acidic liquid water on Mars—A reinterpretation of MER mission results
journal, March 2009

  • Fairén, Alberto G.; Schulze-Makuch, Dirk; Rodríguez, Alexis P.
  • Planetary and Space Science, Vol. 57, Issue 3
  • DOI: 10.1016/j.pss.2008.11.008

Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian
journal, March 2010

  • McCubbin, Francis M.; Smirnov, Alexander; Nekvasil, Hanna
  • Earth and Planetary Science Letters, Vol. 292, Issue 1-2
  • DOI: 10.1016/j.epsl.2010.01.028

Dissolution kinetics of biogenic silica from the water column to the sediments
journal, February 2002


The nature of water in chalcedony and opal-C from brazilian agate geodes
journal, October 1985

  • Graetsch, H.; Fl�rke, O. W.; Miehe, G.
  • Physics and Chemistry of Minerals, Vol. 12, Issue 5
  • DOI: 10.1007/BF00310343

Sequences of silica phase transitions: effects of Na, Mg, K, Al, and Fe ions
journal, May 1998


The diurnal water cycle at Curiosity: Role of exchange with the regolith
journal, February 2016


Juvenile chemical sediments and the long term persistence of water at the surface of Mars
journal, September 2009


Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins
journal, October 2016


Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars
journal, August 2017


Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
journal, October 2015


Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars
journal, October 2010

  • Skok, J. R.; Mustard, J. F.; Ehlmann, B. L.
  • Nature Geoscience, Vol. 3, Issue 12
  • DOI: 10.1038/ngeo990

Silica phases in sinters and residues from geothermal fields of New Zealand
journal, June 2004


Opaline silica in young deposits on Mars
journal, January 2008

  • Milliken, R. E.; Swayze, G. A.; Arvidson, R. E.
  • Geology, Vol. 36, Issue 11
  • DOI: 10.1130/G24967A.1

Water adsorption kinetics and contact angles of silica particles
journal, January 2001

  • Muster, Tim H.; Prestidge, Clive A.; Hayes, Robert A.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 176, Issue 2-3
  • DOI: 10.1016/S0927-7757(00)00600-2

Extensive hydrated silica materials in western Hellas Basin, Mars
journal, November 2013


Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars
journal, January 2011

  • Wray, J. J.; Milliken, R. E.; Dundas, C. M.
  • Journal of Geophysical Research, Vol. 116, Issue E1
  • DOI: 10.1029/2010JE003694

Silicic volcanism on Mars evidenced by tridymite in high-SiO 2 sedimentary rock at Gale crater
journal, June 2016

  • Morris, Richard V.; Vaniman, David T.; Blake, David F.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1607098113

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
journal, July 2012


Near infrared characterization of water and hydroxyl groups on silica surfaces
journal, January 1964


Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow
journal, September 2013


ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars
journal, January 2016

  • Maurice, S.; Clegg, S. M.; Wiens, R. C.
  • Journal of Analytical Atomic Spectrometry, Vol. 31, Issue 4
  • DOI: 10.1039/C5JA00417A

Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor
journal, March 2017


Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy
journal, November 2017

  • Rapin, W.; Bousquet, B.; Lasue, J.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 137
  • DOI: 10.1016/j.sab.2017.09.003

Water in silicate glasses: An infrared spectroscopic study
journal, January 1982

  • Stolper, Edward
  • Contributions to Mineralogy and Petrology, Vol. 81, Issue 1
  • DOI: 10.1007/BF00371154

State of water molecules and silanol groups in opal minerals: a near infrared spectroscopic study of opals from Slovakia
journal, September 2011

  • Boboň, Miroslav; Christy, Alfred A.; Kluvanec, Daniel
  • Physics and Chemistry of Minerals, Vol. 38, Issue 10
  • DOI: 10.1007/s00269-011-0453-0

Dynamic Albedo of Neutrons (DAN) Experiment Onboard NASA’s Mars Science Laboratory
journal, July 2012

  • Mitrofanov, I. G.; Litvak, M. L.; Varenikov, A. B.
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9924-y

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests
journal, June 2012

  • Wiens, Roger C.; Maurice, Sylvestre; Barraclough, Bruce
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9902-4

Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars
journal, January 2011

  • Ruff, Steven W.; Farmer, Jack D.; Calvin, Wendy M.
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JE003767

Sedimentary silica on Mars
journal, January 2003


The timing of alluvial activity in Gale crater, Mars
journal, February 2014

  • Grant, John A.; Wilson, Sharon A.; Mangold, Nicolas
  • Geophysical Research Letters, Vol. 41, Issue 4
  • DOI: 10.1002/2013GL058909

Sublacustrine depositional fans in southwest Melas Chasma: SUBLACUSTRINE DEPOSITIONAL FANS
journal, October 2009

  • Metz, Joannah M.; Grotzinger, John P.; Mohrig, David
  • Journal of Geophysical Research: Planets, Vol. 114, Issue E10
  • DOI: 10.1029/2009JE003365

Crystallization and Phase Stability of CaSO 4 and CaSO 4 - Based Salts
journal, April 2003

  • Freyer, Daniela; Voigt, Wolfgang
  • Monatshefte f�r Chemie / Chemical Monthly, Vol. 134, Issue 5
  • DOI: 10.1007/s00706-003-0590-3

Water and hydrogen release from perlites and opal: A study with a directly coupled evolved gas analyzing system (DEGAS)
journal, December 2014

  • Thomas, P. S.; Heide, K.; Földvari, M.
  • Journal of Thermal Analysis and Calorimetry, Vol. 120, Issue 1
  • DOI: 10.1007/s10973-014-4336-8

The Precious Opal Deposit At Wegel Tena, Ethiopia: Formation Via Successive Pedogenesis Events
journal, July 2017

  • Chauviré, Boris; Rondeau, Benjamin; Mazzero, Francesco
  • The Canadian Mineralogist, Vol. 55, Issue 4
  • DOI: 10.3749/canmin.1700010

Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars: Silica Enriching Diagenesis, Gale, Mars
journal, May 2017

  • Frydenvang, J.; Gasda, P. J.; Hurowitz, J. A.
  • Geophysical Research Letters, Vol. 44, Issue 10
  • DOI: 10.1002/2017GL073323

Cristobalitic Stage in the Diagenesis of Diatomaceous Shale
journal, May 1974


Diagenesis of siliceous oozes—I. Chemical controls on the rate of opal-A to opal-CT transformation—an experimental study
journal, August 1977


Low-temperature opal-CT precipitation in Antarctic deep-sea sediments: evidence from oxygen isotopes
journal, December 1991


Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific – A modern analogue for banded iron/chert formations?
journal, July 2014

  • Meister, Patrick; Chapligin, Bernhard; Picard, Aude
  • Geochimica et Cosmochimica Acta, Vol. 137
  • DOI: 10.1016/j.gca.2014.03.035

Temperature dependent crystallographic transformations in chalcedony, SiO2, assessed in mid infrared spectroscopy
journal, May 2011

  • Schmidt, Patrick; Fröhlich, François
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 78, Issue 5
  • DOI: 10.1016/j.saa.2011.01.036

The role of water in opal
journal, January 1965

  • Segnit, E. R.; Stevens, T. J.; Jones, J. B.
  • Journal of the Geological Society of Australia, Vol. 12, Issue 2
  • DOI: 10.1080/00167616508728593

Thermal properties of Australian sedimentary opals and Czech moldavites
journal, February 2010

  • Thomas, P. S.; Šesták, J.; Heide, K.
  • Journal of Thermal Analysis and Calorimetry, Vol. 99, Issue 3
  • DOI: 10.1007/s10973-010-0706-z

Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A.
journal, August 2005


Works referencing / citing this record:

Electrospray deposition followed by laser-induced breakdown spectroscopy (ESD-LIBS): a new method for trace elemental analysis of aqueous samples
journal, January 2019

  • Ripoll, L.; Hidalgo, M.
  • Journal of Analytical Atomic Spectrometry, Vol. 34, Issue 10
  • DOI: 10.1039/c9ja00145j