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Nuclear fusion power delivered by magnetic confinement toka-

mak reactors carries the promise of sustainable and clean energy

for the future [1]. The avoidance of large-scale plasma instabili-

ties called disruptions [2, 3] is one of the most pressing challenges

[4, 5] towards this goal. Disruptions are particularly deleteri-

ous for large burning plasma systems such as the multi-billion

dollar international ITER project [6] currently under construc-

tion, where the fusion reaction aims to be the first to produce

more power from fusion than is injected to heat the plasma. Here

we present a new method, based on deep learning, to forecast

disruptions and extend considerably the capabilities of previous

strategies such as first-principles-based [5] and classical machine-

learning approaches [7, 8, 9, 10, 11]. In particular, our method
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delivers for the first time reliable predictions on machines other

than the one on which it was trained – a crucial requirement for

large future reactors that cannot afford training disruptions. Our

approach takes advantage of high-dimensional training data to

boost the predictive performance while also engaging supercom-

puting resources at the largest scale in order to deliver solutions

with improved accuracy and speed. Trained on experimental data

from the largest tokamaks in the US (DIII-D [12]) and the world

(JET [13]), our method can also be applied to specific tasks such

as prediction with long warning times: this opens up possible av-

enues for moving from passive disruption prediction to active re-

actor control and optimization. These initial results illustrate the

potential for deep learning to accelerate progress in fusion en-

ergy science and, in general, in the understanding and prediction

of complex physical systems.

Tokamaks use strong magnetic fields to confine high-temperature plasmas

with the goal of creating the conditions for extracting power from the resulting

fusion reaction in the plasma [14]. The thermal and magnetic energy in the toka-

mak can drive plasma instabilities that lead to disruptions [2], a central science

and engineering challenge facing practical power production from nuclear fusion.

Disruptions abruptly destroy the plasma’s magnetic confinement, thus terminat-

ing the fusion reaction and rapidly depositing the plasma energy into the confin-

ing vessel [3, 4] (see the section “Disruptions” in the Supplementary Information
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for details). The resulting thermal and electromagnetic force loads can irreparably

damage key device components. However, if an impending disruption is predicted

with sufficient warning time [3], a disruption mitigation system (DMS) using tech-

niques such as massive gas or shattered pellet injection [15] can be triggered. The

DMS terminates the discharge but significantly reduces the deleterious effects of

the disruption. Current guidance for the minimum required warning time for suc-

cessful disruption mitigation on ITER is about 30 ms, although it is in general set

by the exact response time of the DMS and may be reduced in the future through

progress in DMS technologies [3]. Throughout this paper, we describe the pre-

dictive performance of all methods at this “deadline” of 30 ms before the disrup-

tion. Additionally though, even longer warning times could allow for a “soft”

rampdown of the plasma current or other active plasma control and disruption

avoidance without termination of the discharge [3].

While plasma instabilities and disruptions are in theory predictable from first

principles [16], this has proven to be extremely challenging since an accurate

physical model [5] would need to take into account (i) a vast range of spatio-

temporal scales; (ii) multi-physics considerations; and (iii) the complexity of dis-

ruption causes and precursor events [17]. Just like for many other fundamental

questions across the physical sciences [18, 19], the inherent complexity of the

problem can make first-principles based approaches impractical on their own.

On the other hand, recent statistical and “classical” machine learning (ML)

approaches (we will refer to ML models that do not apply DL paradigms as “clas-

sical” algorithms throughout this paper) based on real time measured data have
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shown promising results [7, 8, 9, 10] and, while they do still have several short-

comings, represent the current state of the art [3] for disruption prediction. Here

we introduce FRNN (Fusion Recurrent Neural Network), a new disruption predic-

tion method based on deep learning (DL) that builds on these pioneering efforts

and extends the capabilities of data-driven approaches in several crucial ways.

Specifically, our method (i) delivers predictive capabilities on devices unseen

during training; (ii) uses the information contained in high-dimensional diagnos-

tic data such as profiles in addition to using scalar signals; (iii) avoids the need

for extensive feature engineering and selection [20, 21]; and (iv) enables rapid

training times through high-performance computing. The cross-device prediction

Specifically, our method (i) delivers predictive capabilities on devices unseen

during training; (ii) uses the information contained in high-dimensional diagnos-

tic data such as profiles in addition to using scalar signals; (iii) avoids the need

for extensive feature engineering and selection [20, 21]; and (iv) enables rapid

training times through high-performance computing. The cross-device prediction

in particular will be key for powerful near-future burning plasma machines like

ITER, since they cannot be run to disrupt more than a few [3] times. Accordingly,

training data from such devices can be expected to be scarce.

Deep neural networks [22] in general consist of many layers of parameterized

nonlinear mappings, whose parameters are trained (“learned”) using backprop-

agation. They have been successful at learning to extract meaningful features

from high-dimensional data such as speech, text, and video. In particular, recur-

rent neural networks (RNNs) powerfully handle sequential data by maintaining
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information in an internal state that is passed between successive time steps, in

addition to taking into account new input data at every time step. Meanwhile,

convolutional neural networks (CNNs) can learn salient, low-dimensional repre-

sentations from high-dimensional data by successively applying convolutional and

down-sampling operations. As the first application of deep learning to disruption

prediction, the specific architecture of FRNN combines both recurrent and con-

volutional components to extract spatio-temporal patterns from multi-modal and

high-dimensional sensory inputs. The overall workflow and detailed architecture

of our approach are presented in figure 1.

Missing a real disruption or calling it too late (false negative, FN) is costly

because its damaging effects go unmitigated, while triggering a false alarm (false

positive, FP) wastes experimental time and resources. Changing the alarm thresh-

old value for the scalar “disruptivity” output of a prediction model (see figure

1 (d)) allows a trade-off between these two economic operation factors. A low

threshold means the alarm is triggered more easily, which will result in fewer

missed disruptions but more false alarms, and vice versa for a high threshold.

This trade-off is captured as a receiver-operator characteristic (ROC) curve [23]

(see the section “Target functions” in the Methods as well as extended data figure

1 for details). The area under this ROC curve (AUC) — our metric for evaluating

algorithms in this paper — lies between 0 and 1 and measures the ability of a

predictive method to catch real disruptions early enough, while at the same time

causing few false positives.

In order to assess our algorithm, we train it to predict disruptive and non-
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disruptive outcomes on past experimental data from the Joint European Torus

(JET) and DIII-D tokamaks, currently comprising over 2 TB. Training our model

effectively required solutions to several unique challenges such as training with

diverse and long sequences and finding machine agnostic signal normalizations

(see the sections “Data considerations” and “Algorithm and training details” in

the Methods for further information, as well as extended data tables 1 and 2 for

a detailed summary of the signals and data sets used). We compare FRNN to

the previous state of the art of support vector machines (SVMs) [10] and small

multi-layer perceptrons (MLPs) [8], as well as other promising models from the

ML literature such as random forests [24] and gradient boosted trees [25]. Ta-

ble 1 reports AUC values for the best version of our model and the best classical

model on various datasets. In all our tests, gradient boosted trees performed the

best among classical models. Only a closed-loop implementation during live ex-

perimental operation subject to the associated unforeseeable circumstances can

ultimately provide definitive evidence of the merits of a predictive method — and

may also lead to additional insights through the process of implementation and

debugging in the live plasma control system. However, the large and representa-

tive archival datasets considered here cover a wide range of operational scenarios

and thus provide significant evidence as to the relative strengths of the methods

considered in this paper.

On the DIII-D dataset, we sample both the training and testing examples uni-

formly across all experimental runs (“shots”). Thus, this dataset requires the least

“generalization” — i.e. the ability of the algorithm to learn patterns during train-
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ing that transfer to new and possibly unseen situations, in this case the testing set.

In this setting, classical methods and our proposed method are competitive, with

the classical method performing slightly better. However, FRNN improves further

in performance closer than 30 ms to the disruption (providing improved predic-

tive performance if mitigation technology becomes faster in the future), performs

as well as the classical method in the “interesting” [3] region of the ROC curve

with high true positives (TPs) and low FPs, and provides better generalization for

threshold choices (see extended data figure 1).

In the JET dataset, training and testing data are drawn from slightly differ-

ent distributions. The testing set is from after an upgrade to the device where

the internal wall was changed from a carbon wall (CW) to an “ITER-like wall”

(ILW) made of beryllium [13], resulting in different physical boundary conditions

as well as different shot and operations characteristics [10]. Here the superior

generalization abilities of FRNN become clear.

Being able to learn generalizable disruption-relevant features from one toka-

mak and apply them to another will be key for a disruption predictor for ITER,

where no extensive disruption campaigns can be executed for generating training

data. The second and third columns of table 1 show the results for cross-machine

performance, where both training and validation data come from one machine,

and testing is performed on the other. This is a difficult task, complicated by

various subtle factors (see the section “Challenges in cross-machine training” in

the Supplementary Information), which has proven challenging for earlier work

[11]. The results show that in this setting, only our DL approach is able to transfer
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significant generalizable knowledge from one machine to the other. The results

are particularly strong for the ITER relevant case of training on the machine with

smaller physical size and less stored energy (DIII-D) and generalizing to the “big”

unseen machine (JET). As far as we are aware, this is the first demonstration of

significant cross-machine generalization for ML based disruption prediction.

While it is not possible to obtain thousands of training shots (including a suf-

ficient number of disruptions) from a new machine like ITER, a small amount of

simulated or real (perhaps low power/current) disruptive shots [3] may be feasi-

ble. To simulate this scenario, we sample a small set δ of shots from the testing

set on the “big” machine (JET) and give the algorithms access to these during

training (see the section “Experimenting with a small number of shots from the

test machine” in the Methods for details). Encouragingly, all models significantly

benefit from this “glimpse” at the testing set (see last column in table 1). Gener-

alization is particularly strong for the DL model. Using only very few JET shots,

FRNN is able to reach performance competitive with that of models trained on the

full JET dataset on the same restricted set of signals available on both machines.

These results are highly relevant for disruption prediction on ITER, since they

demonstrate the feasibility of training well-performing models without the need

for many disruptive training shots from the target machine.

Since manual dimensionality reduction and feature engineering (i.e. the ex-

traction of useful low dimensional summaries or representations from high di-

mensional data [26]) would first be necessary, classical methods have been unable

to take advantage of higher-dimensional signals such as profiles. Profiles are 1D
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data capturing the dependence of a relevant plasma parameter such as the elec-

tron temperature or density on the radius as measured from the plasma core to the

edge. This radial dependence is generally the most important, as variations along

the poloidal or toroidal degrees of freedom are subject to much greater particle

mobility and resulting faster averaging times due to the structure of the confining

magnetic fields [14]. Profiles could provide rich new physics information and in-

sight, and many reaction metrics and control mechanisms already relate to their

temporal evolution [27] (see the section “Extensions and future work” in the SI for

further details). While profile data show significant differences between machines

and currently are of limited quality and temporal availability (see the section “Data

challenges” in the Methods for details), our algorithm is nonetheless able to bene-

fit from these data and and generalize between machines. Performance of the best

DL models universally increases when including profiles (see table 1), including

for cross-machine prediction. This demonstrates that there is a wealth of predic-

tive, disruption-relevant information contained in multi-modal, high-dimensional

data — a critical fusion physics insight. These findings are further corroborated

by explicit analyses of signal importance (see extended data figure 2). The new

ability of our DL model to take advantage of this new physics data without resort-

ing to the use of hand-tuned features or invoking human domain expertise is key.

Higher-quality, more densely available, and potentially even higher-dimensional

signals such as 2D ECEi imaging data [28] (see the section “Data challenges”

in the Methods for additional examples) will add even more predictive power to

DL models and might lead to new physics insights in the future (see the section
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“Extensions and future work” in the Supplementary Information).

Figure 2 shows time series of various example shots and the resulting algo-

rithmic predictions. In (a), an example false alarm is triggered on a DIII-D shot at

about 5200 ms into the shot. However, this FP remains a plausible prediction, as

the observed symptoms are consistent with a “minor disruption” (see the section

“Disruptions” in the Supplementary Information) — an event characterized by a

thermal quench (i.e. a rapid loss of thermal energy to the plasma facing compo-

nents) without a current quench (i.e. a loss in plasma current) [3]. Accompanied

by only minor disturbances in the plasma current, this is evident in the (i) drop in

β (the ratio of thermal to magnetic pressure in the plasma); (ii) peaking and rapid

change of the temperature (and density) profiles; and (iii) spiking locked mode.

The fact that false alarms are often understandable like this and “make sense”

gives confidence and physical interpretability to the model. By serving as a reli-

able measure of “disruptivity” as exemplified in this shot, FRNN could serve as

an analysis tool to filter databases and help identify causes, precursors and other

events relevant to disruption physics [2, 29], thus supporting discovery science in

this area. As is visible from the random spikes in (b), we find qualitatively that

false alarms from the classical methods are often erratic and not as attributable to

physically meaningful events.

Figure 2 (b) shows an example of a disruptive shot that is missed by the best

performing classical algorithm (gradient boosted trees) but is correctly caught by

our method. Although no sudden events occur near the disruption at the end of the

shot, FRNN does pick up on the slow (∼ 1000 ms long) rise of the core radiated
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power, while the best performing classical approach — gradient boosted trees —

does not. This is likely due to its lack of access to temporal information (see the

section “Training for classical models” in the Methods for details).

Figure 2 (c) compares FRNN trained (and tested) on only scalar signals (yel-

low) with a model trained on all signals including profiles (black) on a disruptive

DIII-D shot. As can be seen from the drop in β, the morphological change in the

profiles and the locked mode spikes (as well as the later spikes in radiated power),

starting around 3350 ms some events are clearly taking place in the plasma that

resulted in a disruption. However, only the model trained using profiles is able

to correctly interpret the early warning signs. Access to 1D profile information

qualitatively changes the prediction and allows early detection of the disruption,

which is missed by the model without access to profiles.

Optimizing a modern ML model is an iterative process. Selection of well-

performing hyperparameters — i.e. parameters of the model that are not opti-

mized during training and need to be set manually, such as the learning rate —

requires searching a high-dimensional space (see extended data table 3 for a com-

prehensive list of hyperparameters and values that were found to perform well).

Evaluating any point in this space entails running full model training and infer-

ence. To make this approach practical, it is key to reduce the time required to train

a single model, and to increase the amount of models that can be trained in parallel

in a given amount of time. Growing model sizes, datasets, and amounts of 1D or

even higher-dimensional data will only make these demands more challenging.

We address these issues with three levels of parallelism, which together enable
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engagement of high performance computing (HPC) at the largest scale to reduce

the time to solution. First, GPU (graphical processing unit) computing accelerates

training over single-machine, multi-core CPU execution by∼ 10−20x. Using the

Message Passing Interface standard (MPI), we next implement a distributed, syn-

chronous, data-parallel training approach [30] to engage large numbers of GPUs

at once. Finally, we parallelize the random hyperparameter search by training

many such distributed multi-GPU models in parallel.

An important application of hyperparameter tuning is the ability to tune mod-

els for a specific task — such as providing much earlier disruption warnings, thus

possibly enabling active plasma control without the need for shutdown [3]. In fig-

ure 3 (a) we show the results of using hyperparameter tuning to select models for

optimal prediction performance at 30 and 1000 ms before the disruption, respec-

tively. The tuned models display qualitatively distinct behavior which generalizes

to the testing set: the model tuned for 30 ms shows better performance closer to

the disruptions, while the model tuned at 1000 ms shows superior performance at

times further away.

Figure 3 (b) demonstrates the excellent strong scaling of FRNN’s data parallel

training up to at least 6000 GPUs on the OLCF Titan supercomputer. We have

replicated this scaling on the Pascal-P100-powered TSUBAME 3.0 and Volta-

powered OLCF Summit supercomputers, as well as with mixed floating point

compute precisions [31]. In the inset to figure 3 (b), we study training progress as

a function of wall time multiplied by the number of GPUs. The fact that the curves

approximately collapse indicates that actually training a model to convergence
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also scales nearly ideally with the number of GPUs employed.

Figure 3 (c) shows the results of hyperparameter tuning runs on 100 parallel

random models, each trained with 100 GPUs, engaging a total of 104 GPUs. We

compare performance to scenarios of only engaging 1 or 100 GPUs to perform

the same search. The black curve shows the speedup of using 104 GPUs over

single GPU execution as a function of the AUC of the models found. Parallel

search becomes increasingly effective for higher AUC values, since those values

occur more rarely. The inset shows near perfect speedup in finding the best model

using 102 and also 104 GPUs, indeed demonstrating effective engagement of su-

percomputing systems ofO(104) GPUs — the scale of the largest supercomputers

available today [32] — and a resulting overall time to solution of only half an hour.

Ultimately, the goal will be not just to mitigate disruptions but to avoid them

entirely if possible. Models that learn a salient representation of the state of the

reactor — as the method presented here — could lie at the core of a deep re-

inforcement learning [33] approach. Using training reactors or simulated data

with synthetic diagnostics [34], these models could be trained to directly control

the reactor while minimizing disruptivity and also optimizing arbitrary objectives

such as fusion power output. This also highlights the potential for future synergy

between ML and more traditional modeling and simulation efforts.

With the example of the prediction of disruptions in fusion reactors, this paper

highlights the potential of DL to complement theory, simulations and experiments

in the analysis, prediction, and control of highly complex physical systems. With

the rapidly growing availability of multi-modal and high-dimensional data across
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several disciplines, the present findings as well as some of the associated chal-

lenges and insights have clear implications for the applicability of DL to fusion

science.
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Methods

Data considerations

Data and preprocessing The data for individual experimental runs (or “shots”)

are stored as separate time traces for every signal, with sampling periods between

∼ 1×10−5 and∼ 1×10−1 seconds. For each shot, we read in all relevant signals,

and cut the signals to the range of times during which all signals contain data. We

then resample the signals to a common sampling rate of 1 millisecond (ms) using

causal information (i.e. for any given time always using the last known value

before the time in question).

Each timestep contains a vector of n signals (see extended data table 1). For

multidimensional signals, their values are simply concatenated onto the global

input vector. A single shot then contains n×T scalar values where T is the length

of the shot. The full dataset includes several thousand shots from both the Joint

European Torus (JET) and DIII-D tokamaks. Only shots that have data for all

signals are included. See extended data table 2 for a summary of the full dataset.

Overall, the size of our dataset from DIII-D and JET amounts to about 2 TB —

comparable with some of the largest published ML datasets [35].

Data challenges A fusion plasma is a complex dynamical system with an un-

known internal state which evolves according to physical principles and emits a

time series of observable data [14]. Capturing the history and current physical

state of the plasma should allow predictions about its future behavior, including

the possibility of disruption. Noisy and incomplete data make this a challenging
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statistical task.

Observable data are captured as scalars and 1D profiles by various passive di-

agnostics such as magnetic measurements, electrical probes, visible and UV spec-

troscopy, bolometry, electron cyclotron emission (ECE), X ray measurements; as

well as active diagnostics such as Thomson scattering, LIDAR, interferometry, or

diagnostic neutral beams [36]. Future work may also consider higher dimensional

sources of data such as such as 2D ECEi imaging [28], 2D magnetic equilibria

[37], or fast camera data [38].

Raw experimental data is difficult to work with directly using machine learn-

ing methods. For instance, the relevant physical time scales and experimental

sampling frequencies of the different signals span several orders of magnitude.

While many dynamic variables in the plasma change within ms or faster, each ex-

perimental run (or “shot”) can last anywhere from ∼ 1− 40 seconds. We choose

a time step of 1 ms to resolve the fastest relevant dynamics without including ex-

cessive data. This sampling results in training examples with sequence lengths of

order O(104).

For each shot, if there is a disruption, this only occurs at the end. Moreover,

depending on the machine, disruptions can be quite rare (< 10% of shots). This

means the actual learning signal for disruption events is quite sparse. We used up-

weighting [39] of positive examples (see the hyperparameter λ in extended data

table 3) to stabilize training and found that it often was able to increase perfor-

mance.

Signals are often noisy or only exist partially. We only use shots that have at
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least some data for every desired signal. However, in contrast to past work we do

not exclude any shots based on “bad” or statistically unusual data. Some signals

in the experimental databases are computed using non-causal information (e.g.

temporal averaging with a time-centered window, usually with a width of ∼ 20

ms). We shift such signals in time to ensure the algorithm does not have access

to any future information at any given time. This approach means that for some

signals the algorithm is seeing slightly “old” data, giving a conservative estimate

for prediction performance.

Some signals are not stored consistently in the database. For instance, the

input power signal on DIII-D changed its units from MW to kW around shot

156000. This was not corrected for during our analysis. Since the algorithm

divides all shots by the same numerical scale, shots before this change appear to

the ML algorithms incorrectly to have a very low value of the input power. Thus,

the signal importance of the input power on DIII-D is likely underestimated by

extended data figure 2.

Profile data currently available are of limited quality and temporal resolution.

Profiles are available at best every 20 ms for DIII-D and 50 ms for JET, and are

often poorly reconstructed or missing entirely. They are also shifted in time to ac-

commodate for non-causal filtering in the EFIT equilibrium reconstruction. Addi-

tionally, the data are qualitatively different between machines, consisting of noisy

raw data on JET and smooth fitted functions on DIII-D.

The shots in more recent JET ILW campaigns (after shot ∼ 84000) are run

at higher power and plasma current, have higher disruption rates, and are often
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affected by active disruption mitigation systems (DMS) [10, 40]. Many shots are

terminated by the DMS long before the onset of a disruption. In such cases, it

is accordingly impossible to know whether any disruption would have actually

occurred. Training on affected shots is challenging, as the ground truth disrup-

tion signal is hidden by the “competing risk” of the mitigation action, which also

obscures physics signals very close to the disruption. Moreover, there may be a

systematic bias in terms of which shots are affected by the DMS. This makes a

fair assessment against data without such terminations impossible. While such

data are thus not directly comparable to the other datasets considered in this pa-

per, we have nonetheless tested our method on the later JET campaigns, in order

to test its ability to handle these more “high-performance” plasmas. We restricted

the disruptive shots to unmitigated and unintentional disruptions. The resulting

“late” JET ILW dataset (as opposed to the “early” ILW campaigns considered in

the main text) and the associated performance values are described in extended

data tables 4 and 5. We find that this large dataset seems to be more difficult

to classify overall, leading to slightly lower AUC values throughout compared to

when testing is performed on the earlier ILW data. However, consistent with the

results presented in the main text, the DL approach again shows strong predictive

capabilities and generalizes better from the JET CW and DIII-D training data to

the ILW testing data than classical approaches. The large size of the dataset also

allowed us to both train and test models on random subsets of the late ILW data

(with a split of 50% training, 25% validation, and 25% testing data; the same split

as was used for the DIII-D data in the main text). The results demonstrate again
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that in this setting where training and testing sets come from the same distribu-

tion — consistent with the DIII-D results from the main text — all methods show

strong predictive capabilities and the classical methods perform essentially as well

as the DL approach.

The computer science community has established a strong example of unified,

open datasets (e.g. ImageNet, IMDB, Penn Treebank, etc.) [35, 41, 42] against

which new machine learning methods can be tested. This allows a direct and

fair comparison between various methods and leads to measurable incremental

progress. In practice, the separation and complexity of the various international

experimental facilities make the construction of such unified databases more chal-

lenging for the fusion community. Thus, most data currently exists in separately

managed databases. We have taken the approach of implementing not only our

own method, but a generalized interface that allows a user to plug and play any

machine learning algorithm adhering to a “train” and “predict” application pro-

gramming interface (API). This allows direct comparison and benchmarking be-

tween variants of our RNN approach with other ML methods, including the state

of the art as used in past publications, such as SVMs and MLPs, as well as re-

cently popular classical methods such as Random Forests or Gradient Boosted

Trees [24, 25]. We believe that the continual development of a wide variety of

methods and such a direct comparison on the same exact data is key to accurately

measure progress and to allow detailed and transparent comparisons of the relative

strengths and weaknesses of all methods. To simplify database access once per-

mission has been obtained, we have included in the code base [43] object oriented
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code based on human readable signal names that fetches raw data from the appro-

priate original databases and performs error checking — this is key for generating

training datasets reliably and at scale.

We have found empirically that absolute predictive performance can be quite

sensitive to ad-hoc choices about the dataset such as the precise group of shots

that are used (and which ones are excluded due to bad/abnormal data, intentional

disruptions, or other criteria) and which signals are used. In our approach, we use

all shots from a given time period. We exclude shots only if for any of our desired

signals the shot does not contain data at all. This means that our dataset includes

shots with known bad data, intentional disruptions, testing shots, etc. While this

can hurt performance, it is the approach that is most conservative, least ad-hoc,

and ideally most representative of live, closed-loop operation. Overall, improved

handling of the data issues mentioned in this section may raise absolute perfor-

mance beyond the levels reported in this paper. Thus, while absolute performance

numbers are important and will be key for the application of disruption prediction

to ITER, we also invite the reader to pay particular attention to the relative perfor-

mance between different methods, as these highlight their relative strengths and

weaknesses.

Algorithm and training details

Training the neural network effectively requires overcoming several unique chal-

lenges, such as the need for generalizable signal normalization, poorly defined

target functions not directly related to the ultimate learning objective (high area
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under the ROC curve), and a need for stateful training [26] on very long (O(104))

sequences of varying length. In this section we describe our approach for over-

coming these challenges in our training procedure. We also provide a comprehen-

sive list of tunable hyperparameters for our model in extended data table 3. All

deep learning (DL) models were implemented using Keras [44] and Tensorflow

[45].

Normalization Neural networks typically expect their inputs to lie in similar

numerical ranges across all dimensions. Moreover, they expect a signal of equal

amplitude to have equal meaning across examples. This poses a significant chal-

lenge in the use of raw physical signals as inputs to any NN architecture. Since

the raw signals have values in the range of 10−6 to 1019, the signals must be nor-

malized such that they all lie around 100. Moreover, many signals (such as the

plasma current, stored energy, or even the time scale itself) will have differing

characteristic scales on different tokamak machines. The normalization should

ideally have the property that signals having the same “physical meaning” from

different machines get mapped to the same numerical value after normalization.

As suggested in past work [11], physically motivated dimensionless combinations

of the raw measurements are a sensible option for generating such input data.

However, we find empirically — the particular normalization scheme used is

in essence a tunable hyperparameter of the model just like any other — that the

best performing method is to simply normalize each signal by its “global numer-

ical scale” across the entire dataset. This automatically brings signals to a rea-
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sonable numerical range and scales appropriately to different tokamak devices.

Thus, the “normalized form” of each signal (which is how signals are plotted in

figure 2 and how the actual algorithm receives them) is simply the original signal

value divided by this global numerical scale, which is computed as follows. For

each shot, we compute the standard deviation of a single signal across that shot

(multi-dimensional signals are counted as one signal, since gradient information

is important in such signals and would be distorted if each channel was normal-

ized individually). Then we define the “global numerical scale” of that signal as

the median across all shots of those per-shot standard deviations. Since a small

fraction of shots contain strong outlier data points lying orders of magnitude out-

side of their typical range (which could distort the computation of the standard

deviation), the median provides a resilient way of obtaining aggregate scale infor-

mation from all shots. No shots are removed or filtered out from the datasets for

having outlying or unusual data. To further ensure that outliers do not deteriorate

performance, we also clip each signal to lie within [−100σ,+100σ], where σ is

its corresponding numerical scale, although we find that this does not measurably

affect performance.

To make profiles scalable between machines, they are at every time step stored

not as a function of real spatial position, but rather as a function of normalized

toroidal magnetic flux (ρ). In extended data table 1 we give a comprehensive list

of signals including their respective units and global numerical scales.
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Target functions The ultimate goal of this learning project is to predict the onset

of disruptions. The exact definition of what target function the neural network

should learn to approximate is important for the architecture of the model and

ultimately for its performance. While ultimately a shot is either disruptive or not

(i.e. the decision is binary, 0 or 1), the RNN needs to return an output value at

every time step. For a non-disruptive shot, the output should clearly always be 0

or “non-disruptive”. However, in a disruptive shot, the best choice for the “target

output” is less obvious. While shortly before the disruption the output should be 1

or “disruptive”, this is not necessarily true several seconds before the disruption.

It is also unclear which choice for such a target function would ultimately result in

the highest possible area under the ROC curve (AUC) — the ultimate performance

metric we are trying to optimize.

Our solution defines a parameter Twarning such that the target function is 1 if

the time to disruption is TD − t < Twarning and 0 otherwise (TD − t is the time

to disruption, where TD is the time at which the disruption occurs and t is the

current time). The intuition is that the neural network shouldn’t be able to know

about a disruption more than Twarning away. Setting Twarning too high might lead

to many false positives, while setting Twarning too low might cause the algorithm

to fail to learn “early warning signs” of disruptions. On JET for instance, we find

empirically that values of Twarning ∼ 10 s work best. We also tried predicting

TD − t or log10(TD − t) directly using a regression loss function. The log version

performs well for the DIII-D tokamak, but not on JET.

We also implemented a “max hinge” loss in the hopes of more closely ap-
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proximating the ultimate learning objective: a high ROC area. This loss merely

considers the maximum output value across all time steps and penalizes it if it

doesn’t cross the threshold in a disruptive sample or if it does cross the threshold

in a non-disruptive sample. The penalty is an L1 hinge loss with threshold −1

for non-disruptive time steps and threshold +1 for time steps within Twarning of

a disruption. The intuition is that in the final evaluation of a shot, only the max-

imum value of the network matters: either it triggers an alarm or not. Thus, this

loss should give a more direct incentive for the network to optimize the area under

the ROC curve. In practice, we find that “max hinge” performs about as well as

a standard hinge loss with the same parameters (for the standard hinge loss, the

same same loss is applied individually for every time step, not just at the time step

of maximum output).

A user of a deployed version of this predictive system must define an alarm

threshold, such that when the RNN output signal reaches a certain value, an alarm

is triggered and thus disruption mitigation actions are engaged. This alarm thresh-

old allows the user to trade off between maximizing true positives (TP) and min-

imizing false positives (FP). A true positive is a true disruption that is correctly

caught by the algorithm (i.e. an alarm is triggered). A false positive is an alarm

that is triggered even though there wasn’t going to be a disruption. We define the

TP rate as the fraction of real disruptive shots for which the algorithm triggers an

alarm before the 30 ms deadline. The FP rate is the fraction of nondisruptive shots

for which the algorithm triggers an alarm at any point in time. As the alarm thresh-

old is raised (harder to cause alarms), there will be less false positives, but also
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less true positives. As the threshold is lowered (easier to cause alarms), there will

be more false positives, but also more true positives. By varying the threshold, an

ROC curve which plots the TP rate vs the FP rate (see extended data figure 1) is

traced out that describes the predictive performance of the algorithm holistically.

To capture this overall trade-off, we use the area under this ROC curve (AUC) to

measure performance of a given method.

Training on long sequences The typical duration of shots and the sampling rate

imply a length of ∼ 1 × 104 samples per shot. We approximate the computation

of the gradient of the loss with respect to the model parameters by truncated back-

propagation through time [46]. We feed “chunks” of TRNN = 128 timesteps at a

time to the RNN. The gradients are then computed over this subsection, the inter-

nal states are saved, and then the next chunk is fed to the RNN while using the last

internal states from the previous chunk as the initial internal states of the current

chunk. This allows the RNN to learn long term dependencies while truncating the

gradient backpropagation through time to TRNN time steps.

Mini-batching Mini-batching [47] is an important technique for improving GPU

performance [48] and accelerating training convergence of DL models. The gradi-

ents of the loss with respect to the parameters are computed for several examples

in parallel and then averaged. For this to work efficiently, the architecture for the

forward and backward pass of each gradient computation needs to be equal for

all the examples computed in parallel. This is not possible if different training
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examples have different lengths. Thus, training on sequences with diverse lengths

is a significant and open problem for many sequence based learning tasks [46],

particularly for sequences of vastly differing lengths. The traditional approach

of bucketing [49, 46] would not work in our case because the sequence length is

strongly correlated with whether shots are disruptive or non-disruptive and thus

individual batches would be biased.

We implement a custom solution based on resetting the internal state of in-

dividual examples within a mini batch, as illustrated in extended data figure 3.

Since there is a persistent internal state between successive chunks in time, it is

not possible to use more than one chunk from a given shot in a given mini-batch

(chunks that are successive in the shot must also be presented to the RNN in suc-

cessive mini-batches during training such that the internal state can be persisted

correctly).

To train batch wise with a batch size of M , we need M independent (i.e.

stemming from different shots) time slices of equal length to feed to the GPU.

We do this by maintaining a buffer of M separate shots. At every training step,

the first TRNN time slices of the buffer are fed as the next batch. The buffer is

then shifted by TRNN time steps. Before adding shots to the buffer, they are cut

at the beginning to be a multiple of TRNN steps. Every time a shot is finished

in the buffer (e.g. the light green shot in the extended data figure 3), a new shot

is loaded (dark green) and the RNN internal states of the corresponding batch

index are reset for training. It is this ability of resetting the internal state of select

batch indices that allows batch wise training on shots of varying lengths. The
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internal states of the other batch indices are maintained and only reset when a new

shot is begun in their respective index of the buffer. Thus, the internal state is

persisted during learning for the entire length of any given shot. This allows the

RNN to learn temporal patterns much longer than the unrolling length TRNN and

potentially as long as the entire shot. The random offsets of the shots against each

other and random shuffling of the training set provides a mixture of disruptive and

non-disruptive samples for the network at every batch to stabilize training. The

fetching of shots and filling of the buffer is performed in a separate computational

thread to pipeline neural network training work with data loading work.

Hyperparameters Overall, the data normalization, training procedure, and model

architecture produce a large number of hyperparameters that must be tuned in or-

der to maximize predictive performance. These hyperparameters include numeri-

cal values such as the learning rate and the number of LSTM layers, but also more

abstract categorical variables such as the precise model architecture or the nor-

malization algorithm used for different signals. We summarize these parameters

in extended data table 3.

Throughout this work and for each dataset, the “best” model is found by hyper-

parameter tuning. This is done by random search in the respective hyperparameter

space of each method, i.e. by training a number of models with random hyper-

parameters on the training set and choosing the one with highest performance on

the validation set. Note that the validation set is from the same distribution as

the training set, since we assume that a real application would not have access to

30



any data from the testing set at training time. Thus, hyperparameter tuning might

not find the truly best model, since the optimization metric is performance on the

validation set and not the test set itself. In all our tests, gradient boosted trees [25]

performed best among classical models, leading to the results in figure 2, extended

data figure 1, as well as table 1. All DL models are trained with early stopping

using the validation AUC as the metric, with a patience of 3 epochs [50]. The best

performing models for table 1 of the main text are obtained in this way by using

20 random trials for each method.

Experimenting with a small number of shots from the test machine To sim-

ulate the scenario of being able to run a few disruptive shots on the test machine

for cross-machine prediction, we remove a set δ of shots from the testing set on the

“big” machine (JET) by sampling random shots until a fixed number of 5 disrup-

tive shots have been sampled. In our experiment, δ contains 5 disruptive shots and

16 non-disruptive shots. The training and validation data from the “small” ma-

chine (DIII-D) are augmented with this set δ to have both more accurate training

and a better measure of validation performance, and the best cross-machine model

is re-trained without extra tuning. Moreover, we apply to particular importance-

weighting or loss adjustment for these extra shots. It is possible that the positive

effect of the additional shots could be even further enhanced by such methods.

The numbers reported in table 1 are generated using this procedure.

We also tested the same scenario by sampling shots chronologically instead of

randomly from the testing set for the same hyperparameters. The idea behind this
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approach is that this may more closely resemble the true distribution of shots that

one would have access to during a new campaign on a new machine. We found

that this approach did not change the results significantly beyond the generally

expected stochastic fluctuations in AUC values of order ±0.01 (which are due to

random training and parameter initializations). The overall ordering of methods

and qualitative range of performance remained the same.

Finally, we also performed tests with numbers of disruptive shots different

than 5. While some stochastic fluctuations are as always expected, we find that

performance generally increases monotonically for 0 to 7 shots, and saturates after

about 7 disruptive shots. Increasing the number of disruptive shots also improves

the fraction of models (given randomly chosen hyperparameters) that converge

to strong cross-machine performance during training. Since the shots used are

removed from the testing set on which the method is ultimately evaluated, it is not

possible with this approach to make a fair comparison of performance for large

numbers of removed shots, as the testing set would become significantly different.

Training for classical models Training on large datasets is problematic for clas-

sical methods, since training algorithms often do not scale well to high perfor-

mance computing (HPC) environments. SVMs for example have a training cost

quadratic in the number of examples [51] which makes very large datasets infea-

sible. Additionally, parallel algorithms for training single models across many

worker nodes are lacking. We use a similar approach to that used in the literature

[10] of producing features for training of the classical ML models in this study.
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At every time step, features are extracted for each signal from a time window

comprising the last 32 ms. Since classical methods cannot learn to automatically

extract patterns of various temporal scales from arbitrary sequence lengths, this

window size represents a manually tuned trade-off between detecting long and

short temporal patterns that might be relevant for disruption prediction. For each

time window of each signal we compute the mean, maximum, and standard de-

viations, as well as the 4 parameters of a 3rd order polynomial fit. Thus, for n

signals, we have a 7n dimensional feature vector at every time step. We then

train the models by considering each time step a separate “training example”. We

train on a random subset of 106 such examples to avoid prohibitively long train-

ing times. The target value is the same as in the “hinge” target for the DL model

(i.e. −1 or 1). We implemented random forests, SVMs with linear and nonlinear

kernels, multi-layer perceptrons with a single hidden layer, and gradient boosted

trees. All classical ML models are implemented in Scikit-Learn [52] and we use

XGBoost [25] to provide the functionality for the gradient boosted trees.

Distributed training In our code, we use python multiprocessing to parallelize

preprocessing, shot loading, downloading and basically all components of the

preparation and training pipeline. The vast majority of the computational load

however occurs during the model training phase. While effective massive-scale

parallelization of neural network training is an important open research question

[53, 30], the idea of data-parallel training is already being used for the largest and

most advanced DL models to date [54].
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Most state of the art industrial algorithms [45, 55] use a parameter server ap-

proach with centralized communication paradigms. By contrast, our MPI imple-

mentation allows us to take advantage of highly optimized divide-and-conquer

communication routines with logarithmic scaling in the number of processes. As

communication is often the bottleneck in distributed training systems, efficient im-

plementation of this component of the training algorithm is key. We empirically

observe a very high ratio of computation to communication time (> 90%/10%)

during distributed training, even on hundreds of GPUs.

The distributed training sequence can be described as follows:

1. N models are run with their own copy of the current parameters (W );

2. Each computes a gradient step on a different subset (mini-batch) of the data

using backpropagation;

3. The gradients are reduced (averaged) using a global reduction, such that

every model has a copy of the averaged gradient;

4. Each model updates the parameters W using the averaged gradient infor-

mation; and

5. Efficient communication is achieved using a custom MPI implementation.

This effectively amounts to training with a large batch size that is the original

batch sizeNexamples/batch multiplied with the number of workersNexamples/batch →

Nworker × Nexamples/batch. To actually achieve a speedup for training, we then

multiply the learning rate by Nworker. This means the algorithm is taking fewer
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learning steps, but each step is larger in magnitude and has smaller variance (since

it is based on more data due to the larger batch size).

Our parallelized MPI implementation is also used for massively parallel batch

wise inference which speeds up the computation of validation metrics between

training epochs. To run batch wise inference, all shots are padded in the end with

zeros to be of the same length. Since information enters the RNN only causally,

these paddings do not influence the computation in the earlier sections of the shot

can then simply be cut off to obtain the final shot output.

Scaling studies

The experiments illustrated in figure 3 (b) were performed on the Titan supercom-

puter [56], and we have replicated these scaling results on both the TSUBAME

3.0 and OLCF Summit supercomputers [57, 58]. The hyperparameter tuning ex-

periment described in figure 3 (c) in the main text, engaging 104 GPUs by training

100 models in parallel, each using 100 GPUs, was also conducted on the Titan

supercomputer and on the JET dataset. The 1 and 100 GPU scenarios are fic-

titious since the time required to actually run these scenarios would have been

prohibitively large. The ratio of time required to train a single model using 1 in-

stead of 100 GPUs was estimated using scaling data as in figure 3 (a) from the

main text. Specifically, the estimate is obtained by comparing timings between

4 and 100 GPUs and extrapolating from there down to 1, since 4 is the smallest

machine architecture that is equal in configuration to 100 GPUs (since each node

has 4 GPUs). The scenario of training the 100 models in serial (one at a time) was
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modeled by considering a large number (5 · 103) of randomized serial arrange-

ments of the 100 already recorded recorded runs, extracting results (such as the

time required to find a model of a certain validation AUC) from each of those

fictitious re-orderings, and averaging the results over all arrangements.

Figure 3 (c) in the main text shows some initial indications that convergence

patterns are changing when using 256 GPUs or more. While it is known that deep

neural networks become harder to train to full accuracy with many worker GPUs

[30] — which corresponds to very large batch sizes — we expect that with larger

models (in terms of trainable parameters), larger datasets, and higher-dimensional

signals, even greater parallelism than reported in figure 3 (c) and the associated

sections in the main text will become practical for single model training. More-

over, promising recent techniques such as learning rate warm-up, scaling, or cy-

cling [30, 59] will likely further extend the practical range of parallelism as well

— thus further engaging our code’s capability of scaling to 1000s of GPUs.

Signal importance studies

In order to prioritize investments in higher quality data acquisition, and also in

order to gain new scientific/physics insights, it is important to quantify the impor-

tance of the various signals for the predictability of disruptions. To this end, we

train a model with just a single signal at a time and measure the final prediction

performance, as seen in extended data figure 2 (a). This is then a proxy for the

disruption relevant information contained in the respective signal. We also train

a model with all signals but a single signal left out and give results in extended
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data figure 2 (b). By comparing the performance to a model trained on all sig-

nals (green), the relative drop in performance is a measure of how important that

signal was for the full model. Naturally, a model trained on many signals might

incorporate high-order interactions between signals, whose effects are not well

measured by either of these two approaches. Moreover, the results are stochastic

and vary according to model instantiations (due to random training initialization)

and hyperparameters. Thus, these estimates should only be seen as a first-order

measure of signal importance. Since these studies require training and testing sev-

eral models in parallel as for hyperparameter tuning, they again can be sped up

significantly using HPC.

Code Availability

The code used in this work is open source and available at [43].
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Figure 1: System overview and disruption prediction workflow. The top image
shows an interior view of the JET tokamak with a non-disruptive plasma on the left
and a disruptive plasma on the right. Diagnostics (a) provide streams of sensory
data (b) which are fed to the recurrent neural network (RNN) based deep learning
algorithm (c) every 1 ms, producing a corresponding “disruptivity” output at every
time step (d). If the output crosses a preset threshold value (dashed horizontal
line), a disruption alarm is called (red star). This alarm triggers mitigation action
such as gas injection (e) into the tokamak to reduce the deleterious effects of the
impending disruption. A detailed schematic of our deep learning model is shown
in (f). The input data consists of scalar 0D signals and 1D profiles. N layers
of convolutional (NF filters each) and downsampling (max-pooling) operations
reduce the dimensionality of the profile data and extract salient low dimensional
representations (features). These features are concatenated with the 0D signals
and fed into a multilayer long-short term memory network (LSTM) withM layers,
which also receives its internal state from the last time step as input. The resulting
final feature vector ideally contains salient information from the past temporal
evolution and the present state of all signals. This vector is fed through a fully
connected layer to produce the output.
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Figure 2: Example predictions on real shots from DIII-D (a,c) and JET (b).
For each shot, the top two panels show scalar signals, the next two panels show
the electron temperature and density profiles, respectively, and the bottom panel
shows the model output as a function of time. T = 0 is defined as the first time
point for which all signals are present in the database, which can differ from the
standard DIII-D and JET time base. Only a representative subset of the signals
used by the algorithm is plotted and each signal is shown in its normalized form
(see the section “Normalization” in the Methods for details and see extended data
table 1 for descriptions of each signal). The red stars and the dashed vertical
lines indicate alarms. Disruptive shots (b-c) have a vertical red line at the 30 ms
deadline before the disruption. (a) DIII-D shot 148778: a false alarm is triggered
about 5200 ms into the shot by a minor disruption. Careful inspection reveals
in fact two separate minor disruptions in close succession, corresponding to the
spikes in the output and the resulting alarms. (b) JET shot 83413: the slow rise
in radiated power allows our deep learning (DL) approach (black) to correctly
predict the disruption hundreds of ms in advance, which is missed by the best
classical model (yellow, see main text for details). (c) DIII-D shot 159593: only
the DL model with access to profile information (black) can correctly predict this
oncoming disruption, while it is missed by the model trained on just scalar signals
(yellow).
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Figure 3: High performance computing results. (a) Accumulated fraction of
detected disruptions and area under the ROC curve (AUC) values achieved (in-
set) on DIII-D as a function of time to disruption for two models optimized for
performance at a time to disruption of 30 (black) and 1000 ms (orange), respec-
tively. (b) Time required for completing one pass over the dataset (one “epoch”)
during training vs number of GPUs engaged. Experimental results (circles) are
compared with a semi-empirical theoretical scaling model (solid line, see the sec-
tion “Derivation of scaling model” in the Supplementary Information for details)
and ideal scaling (dashed line). The relative error (measured as empirical standard
deviation) of the experimental data is much smaller than the circular symbols at
±2.5%. The inset shows actual training progress measured via mean training loss
(i.e. the difference between target and realized output of the model; decreasing
curves) and validation AUC (increasing curves) for various numbers of GPUs
(NGPU ) as a function of scaled walltime (walltime ×NGPU ). The best validation
AUC value is denoted by a star. The 256 GPU run shows some initial indications
that the pattern of convergence is changing, though still giving final testing AUC
as good as the other runs. (c) Results for hyperparameter tuning with 104 GPUs
with parallel random search across 100 models, trained on 100 GPUs each. The
time to solution for finding a model of given validation AUC is compared to the
scenario of using a single GPU. The inset shows the time required for finding the
best model in the scenarios of using 1, 102, and 104 total GPUs. For 100 GPUs, we
distinguish training the 100 models in serial, but using 100 GPUs for each model
(“parallel training”) vs. running 100 models in parallel, trained on 1 GPU each
(“parallel tuning”), which both achieve nearly 100x speedup.
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Single machine Cross-machine Cross-Machine with “glimpse”
Training Set DIII-D JET (CW) JET (CW) DIII-D DIII-D +δ
Testing Set DIII-D JET (ILW) DIII-D JET (ILW) JET (ILW) −δ
Best classical Model 0.937 0.893 0.636 0.616 0.851
FRNN 0D 0.890 0.952 0.761 0.817 0.879
FRNN 1D 0.922 − − 0.836 0.911

Table 1: Prediction results. Test set performance of the best models measured
as area under the ROC curve (AUC) at 30 ms before the disruption. We compare
FRNN with and without profile information (“1D” and “0D”, respectively), and
the best classical approach. The best model for each dataset is shown in bold. The
last column shows results for cross-machine testing with a small amount of data
δ from the testing machine added to the training set (see text for details). 1.0 is
perfect performance and 0.5 is equivalent to random guessing. Since the relevant
diagnostic for 1D profiles was not available on most JET shots from the carbon
wall dataset, 1D profiles are not included when training on JET data.
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Extended Data Figure 1: ROC curves on the test set for our model and the best
classical model for DIII-D (a) and JET (b). The true positive rate is the fraction
of disruptive shots that are labeled disruptive in advance of the 30 ms deadline.
The false positive rate is the fraction of nondisruptive shots that are labeled dis-
ruptive at any time. The areas under the curves correspond to the values in table
1. The inset shows the fraction of detected disruptions as a function of the time to
disruption for an “optimal” threshold value. On the corresponding ROC curve of
the same color, this optimal threshold defines a point which is indicated with a cir-
cle (see main text for details). The inset also shows the 30 ms detection deadline
as vertical red line. While in (a) the area under the ROC curve (AUC) is slightly
higher for the classical method (see table 1), FRNN performs equally well in the
interesting “upper left” region of high true positives (TPs) and low false positives
(FPs). Moreover, only our approach provides additional detections between 30
and 10 ms to the disruption, reacting to the spikes in radiated power which often
occur on this time scale before the disruption (see Prad,core in figure 2 (c)). Thus
FRNN could provide improved predictive performance if mitigation technology
becomes faster in the future. In addition, a threshold value in practice needs to be
selected for calling alarms. The best threshold value is estimated by optimizing it
on the training set, in hopes that it will still perform well on the unseen testing set.
We define the “best” threshold as the value that maximizes the quantity TP −FP
where TP is the true positive rate and FP is the false positive rate. This is equiv-
alent to finding the point on the ROC curve furthest in the “Northwest” direction.
For FRNN, the threshold generalizes excellently (black and purple circles). For
the classical approach, while the overall ROC curve is encouraging, the threshold
estimate is poor (orange square) and far from its ideal position (orange circle).
For each method, the fraction of detected disruptions are shown in the inset as a
function of time until disruption by using the threshold value corresponding to the
circle positions — which for the classical method we determine manually with
knowledge of the testing set (to give a conservative and maximally favorable es-
timate of its performance). Median alarm times are ∼ 500 − 700 ms on DIII-D
and∼ 1000 ms on JET. Encouragingly, a majority of disruptions are detected with
large warning times of hundreds of ms — sufficient for disruption mitigation (re-
quiring ∼ 30 ms) and key for possible future preventative plasma control without
the need for shut down.

48



a b

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
AUC value

Ip,error
Ip,direct

All
Prad,core

ne(ρ)
τin

ne

β
li

Ip,target
Te(ρ)

Pin

WMHD

Ip
LM
q95

Prad,edge

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AUC value

Prad,core

li
Pin

Ip,error
Ip,direct

τin

β
ne

Prad,edge

WMHD

ne(ρ)
Te(ρ)

Ip
LM

Ip,target

q95
All

Extended Data Figure 2: Signal importance studies. Signals are ordered from
top to bottom in decreasing order of importance. Signals are defined in extended
data table 1. Models were trained on the DIII-D dataset. (a) Test set area under
the ROC curve (AUC) values achieved by models trained on a single signal at a
time. The AUC value is representative of how much information is contained in
that single signal. We also show the performance for a model trained on all sig-
nals for comparison (green bar). (b) Test AUC values for a model trained on all
signals except the labeled one. In this case, the drop in performance compared
to the model trained on all signals (green bar) is a measure of how important the
given signal is for the final model. The exact results for both figures are in gen-
eral stochastic and vary over hyperparameters and for each new training session,
so only general trends should be inferred. It appears consistently that the locked
mode, plasma current, radiated power, and q95 signals contain a large amount
of disruption-relevant information, similar to the results of past studies of signal
importance on JET [21]. Both panels — in particular (a), which measures the
information content of a single signal at a time — also confirm that there is signif-
icant information in the profile signals. With higher quality reconstructions, more
frequent sampling, and better (causal) temporal filtering (to obviate the need to
shift the signal in time and thus lose time sensitive information) they are likely
to become even more relevant. This indicates that higher dimensional data likely
contain much useful information that should be considered in the future. Panel (b)
also highlights another benefit of DL, which is that almost all additional signals
increase performance or at least do not have a significant negative impact. Signals
can thus generally be used without having to worry about confusing the algorithm
and reducing performance, and therefore without having to spend much time on
signal selection. For other methods, signal selection (e.g. removing correlated,
noisy, or non-informative signals) is key [21].
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Extended Data Figure 3: Snapshot of the training buffer. The figure illustrates
how data is fed to the recurrent neural network (RNN) for batch wise training with
a batch size of M . Each horizontal bar represents data from a shot, and different
colors indicate different shots. A color change in a given row means a new shot
starts. Every time step, the leftmost chunk is cut from the buffer, supplied to the
training algorithm, and all shots are shifted to the left. When a shot is finished
(such as the light green bar is about to be), a new shot is loaded into the buffer,
and the internal state of the RNN at that batch index is reset. See the section
“Mini-batching” in the Methods for details.

50



Signal description Avail. on machines Symbol Numerical scale DIII-D Numerical scale JET
Plasma current DIII-D, JET Ip 3.81× 10−1 MA 5.03× 10−1 MA
Plasma current target DIII-D Ip,target 3.93× 10−1 MA −
Plasma current error DIII-D Ip,error 3.10× 10−2 MA −
Plasma current direction DIII-D I

p,direct 1.0 −
Internal inductance DIII-D, JET li 2.02× 10−1 1.51× 10−1

Electron temperature profile DIII-D,JET∗ Te(ρ) 9.53× 10−1 keV 1.53× 103 eV
Electron density profile DIII-D,JET∗ ne(ρ) 1.47× 1019 m−3 2.98× 1019 m−3

Electron density DIII-D, JET ne 1.19× 1019 m−3 4.69× 1019 m−3

Input power DIII-D , JET Pin 1.85× 106 W 4.47× 106 W
Input beam torque DIII-D Pin 1.47 Nm −
Radiated power (core) DIII-D, JET Prad,core 4.58× 10−4 MW 4.05× 104 W
Radiated power (edge) DIII-D, JET P

rad,edge 4.94× 10−4 MW 2.72× 104 W
Radiated power (total) JET Prad − 2.22× 106 W
Plasma energy DIII-D, JET WMHD 2.79× 105 J 1.20× 106 J
Safety factor (magnetic field pitch) DIII-D, JET q95 1.0 1.0
Normalized plasma pressure (ratio of
thermal to magnetic pressure)

DIII-D β 6.91× 10−3 −

Locked mode (nonrotating instability)
amplitude

DIII-D, JET LM 1.14 µT 5.72× 10−5 T

Normalized toroidal magnetic flux DIII-D, JET ρ 1.0 1.0

Extended Data Table 1: Signals considered and availability on the machines.
Electron density and electron temperature profiles (denoted by an asterisk) are
only available on the more recent JET campaigns (ITER-like wall). Each signal
is normalized by its numerical scale before feeding to the machine learning algo-
rithms. The numerical scale is computed as the median of the standard deviations
of the signal for all shots (see the section “Normalization” in the Methods for
details).
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Machine Shot range Total shots Num. disruptive Note
JET train 66027− 79853 2894 215 JET carbon wall campaigns C23-C27b
JET validate 66027− 79853 1425 87 JET carbon wall campaigns C23-C27b
JET test 81852− 83793 1191 174 JET ITER-like wall campaigns C28-30
DIII-D train 125500− 168555 1734 407 DIII-D shots since 2006
DIII-D validate 125500− 168555 853 197 DIII-D shots since 2006
DIII-D test 125500− 168555 862 206 DIII-D shots since 2006

Extended Data Table 2: Datasets used in this paper. Shots are obtained from
the respective machines. All shots that contain data for all signals are used. No
shots are discarded for bad or abnormal data, or for being known testing shots or
intentional disruptions.
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Hyperparameter Explanation Best value
η Learning rate 1.7× 10−5
γ Learning rate decay per epoch 0.985
λ Weighting factor for positive examples 16
N Number of recurrent neural network

(RNN) layers
2

ncells Number of RNN cells per layer 200
TRNN Number of timesteps through which

backpropagation is run
128

RNN type Type of RNN Long short term memory net-
work (LSTM)

nbatch Batch size 128
Twarning Time at which the target function for a

disruptive shot becomes positive in ms
10000

Target Type of target function TTD (Hinge)
Normalizer Type of normalization scheme Divide by σ

dt timestep 0.001 s
Tmin,warn minimal acceptable warning time 0.03s

Hide warning Whether to hide the last Tmin,warn

timesteps during training (these wouldn’t
be available in a real shot)

False

NF Number of convolutional filters 128
M Number of convolutional layers 128

Lfilters Size of 1D convolutional filters 3
Lpool Size of 1D max pooling 2

Optimizer Stochastic optimization scheme Adam [60]
Dropout Dropout probability 0.1

L2 Regularization Weight regularization of all layers 10−2
Clip norm Maximum norm of gradients 10

Extended Data Table 3: Hyperparameters to be optimized together with expla-
nations and well-performing values. The “hinge” target is −1 before Twarning,
then +1 for disruptive shots. It requires a hinge loss [61]. The normalization
scheme referenced in the table in the “Normalizer” row divides each signal by
its global numerical scale across the dataset (see the section “Normalization” in
the Methods for details). While all quoted parameters perform well on both toka-
maks, the specific values shown above are found by optimizing for validation
performance on JET.
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Machine Shot range Total shots Num. disruptive Note
JET 83794− 92504 5002 369 JET ILW C31-C37

Extended Data Table 4: Data from the later JET ILW campaigns. Only nondis-
ruptive shots and unintentional disruptive shots without active mitigation are used.
Thus, the shots used contain only a small subset of the total number of disruptive
shots (1952) from these campaigns. Of those considered, all shots that contain
data for all signals are used. No shots are discarded for bad or abnormal data.
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Single machine Cross-machine Cross-Machine with “glimpse”
Training Set JET (CW) JET (ILW late) DIII-D DIII-D +δ
Testing Set JET (ILW late) JET (ILW late) JET (ILW late) JET (ILW late) −δ
Best classical Model 0.880 0.951 0.483 0.899
FRNN 0D 0.923 0.952 0.793 0.907
FRNN 1D − 0.956 0.824 0.922

Extended Data Table 5: Prediction results on the late ILW data. Test set perfor-
mance of the best models measured as area under the ROC curve (AUC) at 30 ms
before the disruption. We compare FRNN with and without profile information
(“1D” and “0D”, respectively), and the best classical approach. The best model
for each dataset is shown in bold. As in table 1, the last column shows results
for cross-machine testing with a small amount of data δ from the testing machine
added to the training set (see text for details). 1.0 is perfect performance and 0.5 is
equivalent to random guessing. Since the relevant diagnostic for 1D profiles was
not available on most JET shots from the carbon wall dataset, 1D profiles are not
included when training on JET CW data.
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