DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals

Abstract

Abstract To explore new constituents in two‐dimensional (2D) materials and to combine their best in van der Waals heterostructures is in great demand as being a unique platform to discover new physical phenomena and to design novel functionalities in interface‐based devices. Herein, PbI 2 crystals as thin as a few layers are synthesized, particularly through a facile low‐temperature solution approach with crystals of large size, regular shape, different thicknesses, and high yields. As a prototypical demonstration of band engineering of PbI 2 ‐based interfacial semiconductors, PbI 2 crystals are assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS 2 is enhanced in MoS 2 /PbI 2 stacks, while a dramatic photoluminescence quenching of  WS 2 and WSe 2 is revealed in WS 2 /PbI 2 and WSe 2 /PbI 2 stacks. This is attributed to the effective heterojunction formation between PbI 2 and these monolayers; type I band alignment in MoS 2 /PbI 2 stacks, where fast‐transferred charge carriers accumulate in MoS 2 with high emission efficiency, results in photoluminescence enhancement, and type II in WS 2 /PbI 2 and WSe 2 /PbI 2 stacks, with separated electrons and holes suitable for light harvesting, results in photoluminescence quenching.more » The results demonstrate that MoS 2 , WS 2 , and WSe 2 monolayers with similar electronic structures show completely distinct light–matter interactions when interfacing with PbI 2 , providing unprecedented capabilities to engineer the device performance of 2D heterostructures.« less

Authors:
ORCiD logo [1];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [2];  [8];  [4];  [2];  [9];  [2];  [2];  [2];  [2];  [9];  [5];  [6] more »; ORCiD logo [2]; ORCiD logo [2];  [2] « less
  1. Nanjing Tech Univ., Nanjing (China). Key Lab. of Flexible Electronics (KLOFE) & Inst. of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
  2. Nanjing Tech Univ., Nanjing (China). Key Lab. of Flexible Electronics (KLOFE) & Inst. of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
  3. Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Peking Univ., Beijing (China). School of Physics, State Key Lab. for Mesoscopic Physics
  6. Nanjing Univ. (China). National Lab. of Solid State Microstructures, School of Physics
  7. Nanjing Tech Univ., Nanjing (China). School of Materials Science and Engineering, Center for Programmable Materials
  8. Sun Yat-sen Univ., Guangzhou (China). School of Materials Science and Engineering
  9. Nanjing Univ. (China). National Lab. of Solid-State Microstructures, School of Electronic Science and Engineering Collaborative, Innovation Center of Advanced Microstructures
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1505975
Alternate Identifier(s):
OSTI ID: 1499077
Report Number(s):
LA-UR-18-31375
Journal ID: ISSN 0935-9648
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 17; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science

Citation Formats

Sun, Yan, Zhou, Zishu, Huang, Zhen, Wu, Jiangbin, Zhou, Liujiang, Cheng, Yang, Liu, Jinqiu, Zhu, Chao, Yu, Maotao, Yu, Peng, Zhu, Wei, Liu, Yue, Zhou, Jian, Liu, Bowen, Xie, Hongguang, Cao, Yi, Li, Hai, Wang, Xinran, Liu, Kaihui, Wang, Xiaoyong, Wang, Jianpu, Wang, Lin, and Huang, Wei. Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals. United States: N. p., 2019. Web. doi:10.1002/adma.201806562.
Sun, Yan, Zhou, Zishu, Huang, Zhen, Wu, Jiangbin, Zhou, Liujiang, Cheng, Yang, Liu, Jinqiu, Zhu, Chao, Yu, Maotao, Yu, Peng, Zhu, Wei, Liu, Yue, Zhou, Jian, Liu, Bowen, Xie, Hongguang, Cao, Yi, Li, Hai, Wang, Xinran, Liu, Kaihui, Wang, Xiaoyong, Wang, Jianpu, Wang, Lin, & Huang, Wei. Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals. United States. https://doi.org/10.1002/adma.201806562
Sun, Yan, Zhou, Zishu, Huang, Zhen, Wu, Jiangbin, Zhou, Liujiang, Cheng, Yang, Liu, Jinqiu, Zhu, Chao, Yu, Maotao, Yu, Peng, Zhu, Wei, Liu, Yue, Zhou, Jian, Liu, Bowen, Xie, Hongguang, Cao, Yi, Li, Hai, Wang, Xinran, Liu, Kaihui, Wang, Xiaoyong, Wang, Jianpu, Wang, Lin, and Huang, Wei. Tue . "Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals". United States. https://doi.org/10.1002/adma.201806562. https://www.osti.gov/servlets/purl/1505975.
@article{osti_1505975,
title = {Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals},
author = {Sun, Yan and Zhou, Zishu and Huang, Zhen and Wu, Jiangbin and Zhou, Liujiang and Cheng, Yang and Liu, Jinqiu and Zhu, Chao and Yu, Maotao and Yu, Peng and Zhu, Wei and Liu, Yue and Zhou, Jian and Liu, Bowen and Xie, Hongguang and Cao, Yi and Li, Hai and Wang, Xinran and Liu, Kaihui and Wang, Xiaoyong and Wang, Jianpu and Wang, Lin and Huang, Wei},
abstractNote = {Abstract To explore new constituents in two‐dimensional (2D) materials and to combine their best in van der Waals heterostructures is in great demand as being a unique platform to discover new physical phenomena and to design novel functionalities in interface‐based devices. Herein, PbI 2 crystals as thin as a few layers are synthesized, particularly through a facile low‐temperature solution approach with crystals of large size, regular shape, different thicknesses, and high yields. As a prototypical demonstration of band engineering of PbI 2 ‐based interfacial semiconductors, PbI 2 crystals are assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS 2 is enhanced in MoS 2 /PbI 2 stacks, while a dramatic photoluminescence quenching of  WS 2 and WSe 2 is revealed in WS 2 /PbI 2 and WSe 2 /PbI 2 stacks. This is attributed to the effective heterojunction formation between PbI 2 and these monolayers; type I band alignment in MoS 2 /PbI 2 stacks, where fast‐transferred charge carriers accumulate in MoS 2 with high emission efficiency, results in photoluminescence enhancement, and type II in WS 2 /PbI 2 and WSe 2 /PbI 2 stacks, with separated electrons and holes suitable for light harvesting, results in photoluminescence quenching. The results demonstrate that MoS 2 , WS 2 , and WSe 2 monolayers with similar electronic structures show completely distinct light–matter interactions when interfacing with PbI 2 , providing unprecedented capabilities to engineer the device performance of 2D heterostructures.},
doi = {10.1002/adma.201806562},
journal = {Advanced Materials},
number = 17,
volume = 31,
place = {United States},
year = {Tue Mar 12 00:00:00 EDT 2019},
month = {Tue Mar 12 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 62 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
journal, September 2016


Electronic transport in polycrystalline Pbl2 films
journal, September 1999

  • Street, R. A.; Ready, S. E.; Lemmi, F.
  • Journal of Applied Physics, Vol. 86, Issue 5
  • DOI: 10.1063/1.371107

Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material
journal, January 2015

  • Zhang, Xin; Qiao, Xiao-Fen; Shi, Wei
  • Chemical Society Reviews, Vol. 44, Issue 9
  • DOI: 10.1039/C4CS00282B

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Gap-Mode Surface-Plasmon-Enhanced Photoluminescence and Photoresponse of MoS 2
journal, May 2018

  • Wu, Zhi-Qian; Yang, Jing-Liang; Manjunath, Nallappagar K.
  • Advanced Materials, Vol. 30, Issue 27
  • DOI: 10.1002/adma.201706527

Emerging Photoluminescence in Monolayer MoS2
journal, April 2010

  • Splendiani, Andrea; Sun, Liang; Zhang, Yuanbo
  • Nano Letters, Vol. 10, Issue 4, p. 1271-1275
  • DOI: 10.1021/nl903868w

Band Alignment Engineering in Two-Dimensional Lateral Heterostructures
journal, August 2018

  • Zheng, Biyuan; Ma, Chao; Li, Dong
  • Journal of the American Chemical Society, Vol. 140, Issue 36
  • DOI: 10.1021/jacs.8b07401

Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides
journal, March 2017


Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application
journal, February 2016


Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS 2 and WS 2 Monolayers
journal, May 2014

  • Tongay, Sefaattin; Fan, Wen; Kang, Jun
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500515q

The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2
journal, April 2014


Whispering Gallery Mode Lasing from Hexagonal Shaped Layered Lead Iodide Crystals
journal, January 2015

  • Liu, Xinfeng; Ha, Son Tung; Zhang, Qing
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn5061207

Quantum well effect in bulk PbI 2 crystals revealed by the anisotropy of photoluminescence and Raman spectra
journal, December 2008


Au@MoS 2 Core–Shell Heterostructures with Strong Light–Matter Interactions
journal, November 2016


Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides
journal, August 2013


Probing the Interlayer Exciton Physics in a MoS 2 /MoSe 2 /MoS 2 van der Waals Heterostructure
journal, September 2017


Layered ultrathin PbI 2 single crystals for high sensitivity flexible photodetectors
journal, January 2015

  • Zhang, Jiye; Song, Tao; Zhang, Zhaojun
  • Journal of Materials Chemistry C, Vol. 3, Issue 17
  • DOI: 10.1039/C4TC02712D

Tunable Photoluminescence of Monolayer MoS 2 via Chemical Doping
journal, November 2013

  • Mouri, Shinichiro; Miyauchi, Yuhei; Matsuda, Kazunari
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403036h

Determination of band alignment in the single-layer MoS2/WSe2 heterojunction
journal, July 2015

  • Chiu, Ming-Hui; Zhang, Chendong; Shiu, Hung-Wei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8666

High-Crystalline 2D Layered PbI 2 with Ultrasmooth Surface: Liquid-Phase Synthesis and Application of High-Speed Photon Detection
journal, September 2016

  • Zheng, Wei; Zhang, Zhaojun; Lin, Richeng
  • Advanced Electronic Materials, Vol. 2, Issue 11
  • DOI: 10.1002/aelm.201600291

Comparison of PbI2 and HgI2 for direct detection active matrix x-ray image sensors
journal, March 2002

  • Street, R. A.; Ready, S. E.; Van Schuylenbergh, K.
  • Journal of Applied Physics, Vol. 91, Issue 5
  • DOI: 10.1063/1.1436298

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Frenkel-like Wannier-Mott excitons in few-layer Pb I 2
journal, April 2015


Bandgap Engineering of Strained Monolayer and Bilayer MoS2
journal, July 2013

  • Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.
  • Nano Letters, Vol. 13, Issue 8, p. 3626-3630
  • DOI: 10.1021/nl4014748

Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions
journal, October 2015


Electrical control of neutral and charged excitons in a monolayer semiconductor
journal, February 2013

  • Ross, Jason S.; Wu, Sanfeng; Yu, Hongyi
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2498

Flexible photodetectors based on phase dependent PbI 2 single crystals
journal, January 2016

  • Zhong, Mianzeng; Huang, Le; Deng, Hui-Xiong
  • Journal of Materials Chemistry C, Vol. 4, Issue 27
  • DOI: 10.1039/C6TC00918B

Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS 2
journal, April 2013

  • Sahoo, Satyaprakash; Gaur, Anand P. S.; Ahmadi, Majid
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp402509w

Anti-Stokes Photoluminescence of van der Waals Layered Semiconductor PbI 2
journal, September 2017

  • Cong, Chunxiao; Shang, Jingzhi; Niu, Lin
  • Advanced Optical Materials, Vol. 5, Issue 21
  • DOI: 10.1002/adom.201700609

Raman Modes of MoS 2 Used as Fingerprint of van der Waals Interactions in 2-D Crystal-Based Heterostructures
journal, September 2014

  • Zhou, Kai-Ge; Withers, Freddie; Cao, Yang
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn5042703

Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices
journal, March 2017


Single Crystal Growth and Spin Polarization Measurements of Diluted Magnetic Semiconductor (BaK)(ZnMn)2As2
journal, November 2017


Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials
journal, October 2016


Ultrafast Dynamics of Metal Plasmons Induced by 2D Semiconductor Excitons in Hybrid Nanostructure Arrays
journal, November 2016


Tunable photoluminescence in a van der Waals heterojunction built from a MoS 2 monolayer and a PTCDA organic semiconductor
journal, January 2018

  • Habib, Mohammad Rezwan; Li, Hongfei; Kong, Yuhan
  • Nanoscale, Vol. 10, Issue 34
  • DOI: 10.1039/C8NR03334J

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Inter-polytype conversion and layer-layer coupling in PbI2
journal, December 1975


Mechanical exfoliation and Raman spectra of ultrathin PbI2 single crystal
journal, April 2016


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures
journal, October 2018


Electronic structure and optical properties of Pb I 2
journal, February 1974


Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
journal, August 2014

  • Hong, Xiaoping; Kim, Jonghwan; Shi, Su-Fei
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.167

Role of Hole Trap Sites in MoS 2 for Inconsistency in Optical and Electrical Phenomena
journal, March 2018

  • Tran, Minh Dao; Kim, Ji-Hee; Kim, Hyun
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 12
  • DOI: 10.1021/acsami.8b00541

All Chemical Vapor Deposition Growth of MoS 2 :h-BN Vertical van der Waals Heterostructures
journal, April 2015


Interfacial Interactions in van der Waals Heterostructures of MoS 2 and Graphene
journal, September 2017


Electronic and vibrational properties of PbI 2 : From bulk to monolayer
journal, August 2018


Tightly bound trions in monolayer MoS2
journal, December 2012

  • Mak, Kin Fai; He, Keliang; Lee, Changgu
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3505

Observation of Strong Interlayer Coupling in MoS 2 /WS 2 Heterostructures
journal, December 2015


Engineering Bandgaps of Monolayer MoS 2 and WS 2 on Fluoropolymer Substrates by Electrostatically Tuned Many-Body Effects
journal, May 2016


Spectroscopic Signatures for Interlayer Coupling in MoS 2 –WSe 2 van der Waals Stacking
journal, August 2014

  • Chiu, Ming-Hui; Li, Ming-Yang; Zhang, Wengjing
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn504229z

Photoluminescence dynamics due to biexcitons and exciton-exciton scattering in the layered-type semiconductor PbI 2
journal, October 2012


Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures
journal, February 2017

  • Wilson, Neil R.; Nguyen, Paul V.; Seyler, Kyle
  • Science Advances, Vol. 3, Issue 2
  • DOI: 10.1126/sciadv.1601832

Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures
journal, February 2015

  • Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7242

Rapid and Nondestructive Identification of Polytypism and Stacking Sequences in Few-Layer Molybdenum Diselenide by Raman Spectroscopy
journal, July 2015

  • Lu, Xin; Utama, M. Iqbal Bakti; Lin, Junhao
  • Advanced Materials, Vol. 27, Issue 30
  • DOI: 10.1002/adma.201501086

Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
text, January 2016

  • Wang, Nana; Cheng, L.; Ge, R.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.9307

Temperature Dependent Raman Studies and Thermal Conductivity of Few Layer MoS2
text, January 2013


Works referencing / citing this record:

MoS 2 and Perylene Derivative Based Type‐II Heterostructure: Bandgap Engineering and Giant Photoluminescence Enhancement
journal, December 2019

  • Obaidulla, Sk Md; Habib, Mohammad Rezwan; Khan, Yahya
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901197

Halogen Engineering for Operationally Stable Perovskite Solar Cells via Sequential Deposition
journal, November 2019


Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides
journal, January 2019

  • Tao, Ye; Koh, See Wee; Yu, Xuechao
  • Nanoscale Advances, Vol. 1, Issue 12
  • DOI: 10.1039/c9na00395a

Vapor Deposition of Perovskite Precursor PbI 2 on Au and Graphite
journal, January 2020

  • Ecker, Benjamin; Wang, Ke; Gao, Yongli
  • MRS Advances, Vol. 5, Issue 8-9
  • DOI: 10.1557/adv.2020.65