DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer

Abstract

Lithium–sulfur batteries are promising for low-cost and high-energy storage, but their applications are still limited by poor cycling stability owing to soluble lithium polysulfide shuttling during battery operation. Avoiding shuttle effect is challenging but it is essential to avoid active material loss and prevent performance decay. We use an ultrathin layer of MoS2 with thickness of 10–40 nm, which is 1–2 orders of magnitude thinner than conventional interlayers, for Li–S batteries to mitigate polysulfide shuttling. The MoS2 layer formed by exfoliated nanoflakes is deposited by the scalable liquid-based self-assembly method. With less than 1% of additional weight in the cathode, the MoS2 interlayer with complete coverage inhibits polysulfide diffusion across the separator and therefore remarkably improves the battery performances. Reversible specific capacity reaches 1010 and 600 mA h g–1 at 0.5 and 2C rates, respectively, which decay slowly over 400 cycles (0.11% per cycle). Moreover, the MoS2 films with high density of catalytic active flake edges enable high areal sulfur loading up to 10 mg cm–2 and areal capacity up to 9.7 mA h cm–2 at a current density of 3.2 mA cm–2.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  2. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Materials and Energy Sciences
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); Swiss National Science Foundation (SNSF)
OSTI Identifier:
1503543
Grant/Contract Number:  
AC02-76SF00515; P2ELP2_172291
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 11; Journal Issue: 3; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium−sulfur battery; polysulfide; self-assembly; shuttle effect; transition-metal dichalcogenide

Citation Formats

Yu, Xiaoyun, Zhou, Guangmin, and Cui, Yi. Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer. United States: N. p., 2018. Web. doi:10.1021/acsami.8b19354.
Yu, Xiaoyun, Zhou, Guangmin, & Cui, Yi. Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer. United States. https://doi.org/10.1021/acsami.8b19354
Yu, Xiaoyun, Zhou, Guangmin, and Cui, Yi. Thu . "Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer". United States. https://doi.org/10.1021/acsami.8b19354. https://www.osti.gov/servlets/purl/1503543.
@article{osti_1503543,
title = {Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer},
author = {Yu, Xiaoyun and Zhou, Guangmin and Cui, Yi},
abstractNote = {Lithium–sulfur batteries are promising for low-cost and high-energy storage, but their applications are still limited by poor cycling stability owing to soluble lithium polysulfide shuttling during battery operation. Avoiding shuttle effect is challenging but it is essential to avoid active material loss and prevent performance decay. We use an ultrathin layer of MoS2 with thickness of 10–40 nm, which is 1–2 orders of magnitude thinner than conventional interlayers, for Li–S batteries to mitigate polysulfide shuttling. The MoS2 layer formed by exfoliated nanoflakes is deposited by the scalable liquid-based self-assembly method. With less than 1% of additional weight in the cathode, the MoS2 interlayer with complete coverage inhibits polysulfide diffusion across the separator and therefore remarkably improves the battery performances. Reversible specific capacity reaches 1010 and 600 mA h g–1 at 0.5 and 2C rates, respectively, which decay slowly over 400 cycles (0.11% per cycle). Moreover, the MoS2 films with high density of catalytic active flake edges enable high areal sulfur loading up to 10 mg cm–2 and areal capacity up to 9.7 mA h cm–2 at a current density of 3.2 mA cm–2.},
doi = {10.1021/acsami.8b19354},
journal = {ACS Applied Materials and Interfaces},
number = 3,
volume = 11,
place = {United States},
year = {Thu Dec 27 00:00:00 EST 2018},
month = {Thu Dec 27 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

In Situ Raman Spectroscopy of Sulfur Speciation in Lithium–Sulfur Batteries
journal, January 2015

  • Wu, Heng-Liang; Huff, Laura A.; Gewirth, Andrew A.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am5072942

Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries
journal, March 2012

  • Schuster, Jörg; He, Guang; Mandlmeier, Benjamin
  • Angewandte Chemie International Edition, Vol. 51, Issue 15, p. 3591-3595
  • DOI: 10.1002/anie.201107817

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries
journal, February 2013

  • Zheng, Guangyuan; Zhang, Qianfan; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1265-1270
  • DOI: 10.1021/nl304795g

Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
journal, May 2011

  • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
  • Angewandte Chemie International Edition, Vol. 50, Issue 26, p. 5904-5908
  • DOI: 10.1002/anie.201100637

A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries
journal, November 2013


Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity
journal, December 2017


Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
journal, November 2011

  • Ji, Liwen; Rao, Mumin; Zheng, Haimei
  • Journal of the American Chemical Society, Vol. 133, Issue 46, p. 18522-18525
  • DOI: 10.1021/ja206955k

Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide
journal, September 2014

  • Wang, Zhiyu; Dong, Yanfeng; Li, Hongjiang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6002

High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene
journal, July 2014

  • Qiu, Yongcai; Li, Wanfei; Zhao, Wen
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5020475

Graphene Sandwiched by Sulfur-Confined Mesoporous Carbon Nanosheets: A Kinetically Stable Cathode for Li–S Batteries
journal, November 2016

  • Xin, Sen; You, Ya; Li, Hui-Qin
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 49
  • DOI: 10.1021/acsami.6b12142

Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder
journal, January 2013

  • Seh, Zhi Wei; Zhang, Qianfan; Li, Weiyang
  • Chemical Science, Vol. 4, Issue 9
  • DOI: 10.1039/c3sc51476e

Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance
journal, October 2013

  • Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403130h

Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes
journal, January 2014

  • Seh, Zhi Wei; Wang, Haotian; Hsu, Po-Chun
  • Energy & Environmental Science, Vol. 7, Issue 2
  • DOI: 10.1039/c3ee43395a

Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating
journal, October 2011

  • Yang, Yuan; Yu, Guihua; Cha, Judy J.
  • ACS Nano, Vol. 5, Issue 11, p. 9187-9193
  • DOI: 10.1021/nn203436j

Strong Sulfur Binding with Conducting Magnéli-Phase Ti n O 2 n –1 Nanomaterials for Improving Lithium–Sulfur Batteries
journal, August 2014

  • Tao, Xinyong; Wang, Jianguo; Ying, Zhuogao
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl502331f

Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries
journal, August 2014

  • Pang, Quan; Kundu, Dipan; Cuisinier, Marine
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5759

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Catalytic oxidation of Li 2 S on the surface of metal sulfides for Li−S batteries
journal, January 2017

  • Zhou, Guangmin; Tian, Hongzhen; Jin, Yang
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 5
  • DOI: 10.1073/pnas.1615837114

Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes
journal, September 2014

  • Seh, Zhi Wei; Yu, Jung Ho; Li, Weiyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6017

Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
journal, January 2012

  • Su, Yu-Sheng; Manthiram, Arumugam
  • Nature Communications, Vol. 3, Article No. 1166
  • DOI: 10.1038/ncomms2163

A Two-Dimensional Porous Carbon-Modified Separator for High-Energy-Density Li-S Batteries
journal, February 2018


Entrapment of Polysulfides by a Black-Phosphorus-Modified Separator for Lithium-Sulfur Batteries
journal, September 2016


Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery
journal, January 2017

  • Park, Jungjin; Yu, Byeong-Chul; Park, Joong Sun
  • Advanced Energy Materials, Vol. 7, Issue 11
  • DOI: 10.1002/aenm.201602567

Lightweight Reduced Graphene Oxide@MoS 2 Interlayer as Polysulfide Barrier for High-Performance Lithium–Sulfur Batteries
journal, January 2018

  • Tan, Lei; Li, Xinhai; Wang, Zhixing
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b18645

Emerging Opportunities for Two-Dimensional Materials in Lithium-Ion Batteries
journal, August 2017


Lithium ion battery applications of molybdenum disulfide (MoS 2 ) nanocomposites
journal, January 2014

  • Stephenson, Tyler; Li, Zhi; Olsen, Brian
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42591F

Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis
journal, December 2016

  • Babu, Ganguli; Masurkar, Nirul; Al Salem, Hesham
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b08681

Multi-Functional Layered WS 2 Nanosheets for Enhancing the Performance of Lithium-Sulfur Batteries
journal, October 2016

  • Lei, Tianyu; Chen, Wei; Huang, Jianwen
  • Advanced Energy Materials, Vol. 7, Issue 4
  • DOI: 10.1002/aenm.201601843

Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets
journal, December 2014

  • Lv, Ruitao; Robinson, Joshua A.; Schaak, Raymond E.
  • Accounts of Chemical Research, Vol. 48, Issue 1
  • DOI: 10.1021/ar5002846

Multiflake Thin Film Electronic Devices of Solution Processed 2D MoS 2 Enabled by Sonopolymer Assisted Exfoliation and Surface Modification
journal, October 2014

  • Yu, Xiaoyun; Prévot, Mathieu S.; Sivula, Kevin
  • Chemistry of Materials, Vol. 26, Issue 20
  • DOI: 10.1021/cm502378g

Liquid Exfoliation of Layered Materials
journal, June 2013

  • Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.
  • Science, Vol. 340, Issue 6139, p. 1226419
  • DOI: 10.1126/science.1226419

Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids
journal, April 2014

  • Paton, Keith R.; Varrla, Eswaraiah; Backes, Claudia
  • Nature Materials, Vol. 13, Issue 6
  • DOI: 10.1038/nmat3944

Hybrid Heterojunctions of Solution-Processed Semiconducting 2D Transition Metal Dichalcogenides
journal, February 2017


Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production
journal, July 2015

  • Yu, Xiaoyun; Prévot, Mathieu S.; Guijarro, Néstor
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8596

Photogenerated Charge Harvesting and Recombination in Photocathodes of Solvent-Exfoliated WSe 2
journal, August 2017


High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS 2 Materials
journal, November 2014

  • Wang, Haotian; Zhang, Qianfan; Yao, Hongbin
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl503730c

Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries
journal, May 2015


Lithium–Sulfur Batteries with the Lowest Self-Discharge and the Longest Shelf life
journal, April 2017


New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy
journal, April 2009


Works referencing / citing this record:

A review of biomass materials for advanced lithium–sulfur batteries
journal, January 2019

  • Yuan, Huadong; Liu, Tiefeng; Liu, Yujing
  • Chemical Science, Vol. 10, Issue 32
  • DOI: 10.1039/c9sc02743b

Sulfiphilic Few‐Layered MoSe 2 Nanoflakes Decorated rGO as a Highly Efficient Sulfur Host for Lithium‐Sulfur Batteries
journal, August 2019

  • Tian, Wenzhi; Xi, Baojuan; Feng, Zhenyu
  • Advanced Energy Materials, Vol. 9, Issue 36
  • DOI: 10.1002/aenm.201901896

An atomic-confined-space separator for high performance lithium–sulfur batteries
journal, January 2020

  • Cui, Junya; Li, Zhenhua; Li, Jianbo
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta11250b

Two‐Dimensional Material‐Functionalized Separators for High‐Energy‐Density Metal–Sulfur and Metal‐Based Batteries
journal, March 2020


A review of biomass materials for advanced lithium–sulfur batteries
journal, January 2019

  • Yuan, Huadong; Liu, Tiefeng; Liu, Yujing
  • Chemical Science, Vol. 10, Issue 32
  • DOI: 10.1039/c9sc02743b