DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Do genome-scale models need exact solvers or clearer standards?

Abstract

Constraint-based analysis of genome-scale models (GEMs) arose shortly after the first genome sequences became available. As numerous reviews of the field show, this approach and methodology has proven to be successful in studying a wide range of biological phenomena (McCloskey et al, 2013; Bordbar et al, 2014). However, efforts to expand the user base are impeded by hurdles in correctly formulating these problems to obtain numerical solutions. In particular, in a study entitled “An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models” (Chindelevitch et al, 2014), the authors apply an exact solver to 88 genome-scale constraint-based models of metabolism. The authors claim that COBRA calculations (Orth et al, 2010) are inconsistent with their results and that many published and actively used (Lee et al, 2007; McCloskey et al, 2013) genome-scale models do support cellular growth in existing studies only because of numerical errors. They base these broad claims on two observations: (i) three reconstructions (iAF1260, iIT341, and iNJ661) compute feasibly in COBRA, but are infeasible when exact numerical algorithms are used by their software (entitled MONGOOSE); (ii) linear programs generated by MONGOOSE for iIT341 were submitted to the NEOS Server (a Web site thatmore » runs linear programs through various solvers) and gave inconsistent results. They further claim that a large percentage of these COBRA models are actually unable to produce biomass flux. Here, we demonstrate that the claims made by Chindelevitch et al (2014) stem from an incorrect parsing of models from files rather than actual problems with numerical error or COBRA computations.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [1];  [3];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [16];  [17];  [1] more »;  [1];  [18];  [19];  [20];  [5];  [20];  [21];  [22];  [23];  [3];  [24];  [1];  [25];  [26];  [27];  [28];  [18];  [29];  [11];  [18];  [3] « less
  1. Univ. of California, San Diego, CA (United States)
  2. Norwegian University of Science and Technology (NTNU), Trondheim (Norway)
  3. University of Luxembourg, Belval (Luxembourg)
  4. Sinopia Biosciences Inc., San Diego, CA (United States)
  5. Genomatica, Inc., San Diego, CA (United States)
  6. Harvard Medical School, Boston, MA (United States)
  7. Univ. of California, San Diego, CA (United States); University of Tuebingen (Germany)
  8. Intrexon, Inc., San Diego, CA (United States)
  9. Virginia Commonwealth Univ., Richmond, VA (United States)
  10. Ecole Polytechnique Fédérale de Lausanne (Switzerland)
  11. Technical University of Denmark, Lyngby (Denmark)
  12. Rose‐Hulman Institute of Technology, Terre Haute, IN (United States)
  13. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  14. Utah State Univ., Logan, UT (United States)
  15. Univ. of California, Los Angeles, CA (United States)
  16. Technical University of Denmark, Lyngby (Denmark) ; Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea)
  17. Babraham Institute, Cambridge (United Kingdom)
  18. Stanford Univ., CA (United States)
  19. Univ. of Toronto, ON (Canada)
  20. Pennsylvania State Univ., University Park, PA (United States)
  21. Technical University of Denmark, Lyngby (Denmark); Chalmers University of Technology, Gothenburg (Sweden)
  22. Univ. of Queensland, Brisbane (Australia)
  23. Centro de Investigaciones Biológicas (CSIC), Madrid (Spain)
  24. Biological Research Center, Szeged (Hungary)
  25. Univ. of Virginia, Charlottesville, VA (United States)
  26. European Molecular Biology Laboratory, Heidelberg (Germany)
  27. Institute for Systems Biology, Seattle, WA (United States)
  28. University of Wisconsin‐Madison, Madison, WI (United States)
  29. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1497970
Report Number(s):
LLNL-JRNL-752771
Journal ID: ISSN 1744-4292; 938708
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Systems Biology
Additional Journal Information:
Journal Volume: 11; Journal Issue: 10; Journal ID: ISSN 1744-4292
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 97 MATHEMATICS AND COMPUTING

Citation Formats

Ebrahim, A., Almaas, E., Bauer, E., Bordbar, A., Burgard, A. P., Chang, R. L., Drager, A., Famili, I., Feist, A. M., Fleming, R. M., Fong, S. S., Hatzimanikatis, V., Herrgard, M. J., Holder, A., Hucka, M., Hyduke, D., Jamshidi, N., Lee, S. Y., Le Novere, N., Lerman, J. A., Lewis, N. E., Ma, D., Mahadevan, R., Maranas, C., Nagarajan, H., Navid, A., Nielsen, J., Nielsen, L. K., Nogales, J., Noronha, A., Pal, C., Palsson, B. O., Papin, J. A., Patil, K. R., Price, N. D., Reed, J. L., Saunders, M., Senger, R. S., Sonnenschein, N., Sun, Y., and Thiele, I. Do genome-scale models need exact solvers or clearer standards?. United States: N. p., 2015. Web. doi:10.15252/msb.20156157.
Ebrahim, A., Almaas, E., Bauer, E., Bordbar, A., Burgard, A. P., Chang, R. L., Drager, A., Famili, I., Feist, A. M., Fleming, R. M., Fong, S. S., Hatzimanikatis, V., Herrgard, M. J., Holder, A., Hucka, M., Hyduke, D., Jamshidi, N., Lee, S. Y., Le Novere, N., Lerman, J. A., Lewis, N. E., Ma, D., Mahadevan, R., Maranas, C., Nagarajan, H., Navid, A., Nielsen, J., Nielsen, L. K., Nogales, J., Noronha, A., Pal, C., Palsson, B. O., Papin, J. A., Patil, K. R., Price, N. D., Reed, J. L., Saunders, M., Senger, R. S., Sonnenschein, N., Sun, Y., & Thiele, I. Do genome-scale models need exact solvers or clearer standards?. United States. https://doi.org/10.15252/msb.20156157
Ebrahim, A., Almaas, E., Bauer, E., Bordbar, A., Burgard, A. P., Chang, R. L., Drager, A., Famili, I., Feist, A. M., Fleming, R. M., Fong, S. S., Hatzimanikatis, V., Herrgard, M. J., Holder, A., Hucka, M., Hyduke, D., Jamshidi, N., Lee, S. Y., Le Novere, N., Lerman, J. A., Lewis, N. E., Ma, D., Mahadevan, R., Maranas, C., Nagarajan, H., Navid, A., Nielsen, J., Nielsen, L. K., Nogales, J., Noronha, A., Pal, C., Palsson, B. O., Papin, J. A., Patil, K. R., Price, N. D., Reed, J. L., Saunders, M., Senger, R. S., Sonnenschein, N., Sun, Y., and Thiele, I. Wed . "Do genome-scale models need exact solvers or clearer standards?". United States. https://doi.org/10.15252/msb.20156157. https://www.osti.gov/servlets/purl/1497970.
@article{osti_1497970,
title = {Do genome-scale models need exact solvers or clearer standards?},
author = {Ebrahim, A. and Almaas, E. and Bauer, E. and Bordbar, A. and Burgard, A. P. and Chang, R. L. and Drager, A. and Famili, I. and Feist, A. M. and Fleming, R. M. and Fong, S. S. and Hatzimanikatis, V. and Herrgard, M. J. and Holder, A. and Hucka, M. and Hyduke, D. and Jamshidi, N. and Lee, S. Y. and Le Novere, N. and Lerman, J. A. and Lewis, N. E. and Ma, D. and Mahadevan, R. and Maranas, C. and Nagarajan, H. and Navid, A. and Nielsen, J. and Nielsen, L. K. and Nogales, J. and Noronha, A. and Pal, C. and Palsson, B. O. and Papin, J. A. and Patil, K. R. and Price, N. D. and Reed, J. L. and Saunders, M. and Senger, R. S. and Sonnenschein, N. and Sun, Y. and Thiele, I.},
abstractNote = {Constraint-based analysis of genome-scale models (GEMs) arose shortly after the first genome sequences became available. As numerous reviews of the field show, this approach and methodology has proven to be successful in studying a wide range of biological phenomena (McCloskey et al, 2013; Bordbar et al, 2014). However, efforts to expand the user base are impeded by hurdles in correctly formulating these problems to obtain numerical solutions. In particular, in a study entitled “An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models” (Chindelevitch et al, 2014), the authors apply an exact solver to 88 genome-scale constraint-based models of metabolism. The authors claim that COBRA calculations (Orth et al, 2010) are inconsistent with their results and that many published and actively used (Lee et al, 2007; McCloskey et al, 2013) genome-scale models do support cellular growth in existing studies only because of numerical errors. They base these broad claims on two observations: (i) three reconstructions (iAF1260, iIT341, and iNJ661) compute feasibly in COBRA, but are infeasible when exact numerical algorithms are used by their software (entitled MONGOOSE); (ii) linear programs generated by MONGOOSE for iIT341 were submitted to the NEOS Server (a Web site that runs linear programs through various solvers) and gave inconsistent results. They further claim that a large percentage of these COBRA models are actually unable to produce biomass flux. Here, we demonstrate that the claims made by Chindelevitch et al (2014) stem from an incorrect parsing of models from files rather than actual problems with numerical error or COBRA computations.},
doi = {10.15252/msb.20156157},
journal = {Molecular Systems Biology},
number = 10,
volume = 11,
place = {United States},
year = {Wed Oct 14 00:00:00 EDT 2015},
month = {Wed Oct 14 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exact solutions to linear programming problems
journal, November 2007

  • Applegate, David L.; Cook, William; Dash, Sanjeeb
  • Operations Research Letters, Vol. 35, Issue 6
  • DOI: 10.1016/j.orl.2006.12.010

Constraint-based models predict metabolic and associated cellular functions
journal, January 2014

  • Bordbar, Aarash; Monk, Jonathan M.; King, Zachary A.
  • Nature Reviews Genetics, Vol. 15, Issue 2
  • DOI: 10.1038/nrg3643

An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models
journal, October 2014

  • Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5893

Improving Collaboration by Standardization Efforts in Systems Biology
journal, December 2014

  • Dräger, Andreas; Palsson, Bernhard Ø.
  • Frontiers in Bioengineering and Biotechnology, Vol. 2
  • DOI: 10.3389/fbioe.2014.00061

Open source computer algebra systems: SymPy
journal, January 2012

  • Joyner, David; Čertík, Ondřej; Meurer, Aaron
  • ACM Communications in Computer Algebra, Vol. 45, Issue 3/4
  • DOI: 10.1145/2110170.2110185

Systems metabolic engineering of Escherichia coli for L ‐threonine production
journal, January 2007

  • Lee, Kwang Ho; Park, Jin Hwan; Kim, Tae Yong
  • Molecular Systems Biology, Vol. 3, Issue 1
  • DOI: 10.1038/msb4100196

Basic and applied uses of genome‐scale metabolic network reconstructions of Escherichia coli
journal, January 2013

  • McCloskey, Douglas; Palsson, Bernhard Ø; Feist, Adam M.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.18

What is flux balance analysis?
journal, March 2010

  • Orth, Jeffrey D.; Thiele, Ines; Palsson, Bernhard Ø
  • Nature Biotechnology, Vol. 28, Issue 3
  • DOI: 10.1038/nbt.1614

Critical assessment of genome-scale metabolic networks: the need for a unified standard
journal, February 2015

  • Ravikrishnan, A.; Raman, K.
  • Briefings in Bioinformatics, Vol. 16, Issue 6
  • DOI: 10.1093/bib/bbv003

Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans
journal, January 2011

  • Satish Kumar, Vinay; Ferry, James G.; Maranas, Costas D.
  • BMC Systems Biology, Vol. 5, Issue 1
  • DOI: 10.1186/1752-0509-5-28

Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models
journal, February 2011

  • Schellenberger, Jan; Lewis, Nathan E.; Palsson, Bernhard Ø.
  • Biophysical Journal, Vol. 100, Issue 3
  • DOI: 10.1016/j.bpj.2010.12.3707

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
journal, August 2011

  • Schellenberger, Jan; Que, Richard; Fleming, Ronan M. T.
  • Nature Protocols, Vol. 6, Issue 9
  • DOI: 10.1038/nprot.2011.308

Transparency in metabolic network reconstruction enables scalable biological discovery
journal, August 2015


The widespread role of non-enzymatic reactions in cellular metabolism
journal, August 2015


A call for virtual experiments: Accelerating the scientific process
journal, January 2015


Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes
journal, January 2017


Optimizing genome-scale network reconstructions
journal, May 2014

  • Monk, Jonathan; Nogales, Juan; Palsson, Bernhard O.
  • Nature Biotechnology, Vol. 32, Issue 5
  • DOI: 10.1038/nbt.2870

Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
journal, November 2016

  • Magnúsdóttir, Stefanía; Heinken, Almut; Kutt, Laura
  • Nature Biotechnology, Vol. 35, Issue 1
  • DOI: 10.1038/nbt.3703

Reproducibility of computational workflows is automated using continuous analysis
journal, March 2017

  • Beaulieu-Jones, Brett K.; Greene, Casey S.
  • Nature Biotechnology, Vol. 35, Issue 4
  • DOI: 10.1038/nbt.3780

KBase: The United States Department of Energy Systems Biology Knowledgebase
journal, July 2018

  • Arkin, Adam P.; Cottingham, Robert W.; Henry, Christopher S.
  • Nature Biotechnology, Vol. 36, Issue 7
  • DOI: 10.1038/nbt.4163

Minimum information requested in the annotation of biochemical models (MIRIAM)
journal, December 2005

  • Novère, Nicolas Le; Finney, Andrew; Hucka, Michael
  • Nature Biotechnology, Vol. 23, Issue 12
  • DOI: 10.1038/nbt1156

A protocol for generating a high-quality genome-scale metabolic reconstruction
journal, January 2010


Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0
journal, February 2019


SinaPlot: An Enhanced Chart for Simple and Truthful Representation of Single Observations Over Multiple Classes
journal, May 2018

  • Sidiropoulos, Nikos; Sohi, Sina Hadi; Pedersen, Thomas Lin
  • Journal of Computational and Graphical Statistics, Vol. 27, Issue 3
  • DOI: 10.1080/10618600.2017.1366914

LibSBML: an API Library for SBML
journal, February 2008


Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models
journal, July 2017


BioModels: ten-year anniversary
journal, November 2014

  • Chelliah, Vijayalakshmi; Juty, Nick; Ajmera, Ishan
  • Nucleic Acids Research, Vol. 43, Issue D1
  • DOI: 10.1093/nar/gku1181

BiGG Models: A platform for integrating, standardizing and sharing genome-scale models
journal, October 2015

  • King, Zachary A.; Lu, Justin; Dräger, Andreas
  • Nucleic Acids Research, Vol. 44, Issue D1
  • DOI: 10.1093/nar/gkv1049

MetaNetX/MNXref – reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks
journal, November 2015

  • Moretti, Sébastien; Martin, Olivier; Van Du Tran, T.
  • Nucleic Acids Research, Vol. 44, Issue D1
  • DOI: 10.1093/nar/gkv1117

OptFlux: an open-source software platform for in silico metabolic engineering
journal, April 2010

  • Rocha, Isabel; Maia, Paulo; Evangelista, Pedro
  • BMC Systems Biology, Vol. 4, Issue 1
  • DOI: 10.1186/1752-0509-4-45

Path2Models: large-scale generation of computational models from biochemical pathway maps
journal, January 2013

  • Büchel, Finja; Rodriguez, Nicolas; Swainston, Neil
  • BMC Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1186/1752-0509-7-116

COBRApy: COnstraints-Based Reconstruction and Analysis for Python
journal, January 2013

  • Ebrahim, Ali; Lerman, Joshua A.; Palsson, Bernhard O.
  • BMC Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1186/1752-0509-7-74

PSAMM: A Portable System for the Analysis of Metabolic Models
journal, February 2016


Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal
journal, April 2017

  • Fritzemeier, Claus Jonathan; Hartleb, Daniel; Szappanos, Balázs
  • PLOS Computational Biology, Vol. 13, Issue 4
  • DOI: 10.1371/journal.pcbi.1005494

SBML Level 3 Package: Flux Balance Constraints version 2
journal, March 2018

  • Olivier, Brett G.; Bergmann, Frank T.
  • Journal of Integrative Bioinformatics, Vol. 15, Issue 1
  • DOI: 10.1515/jib-2017-0082

Controlled vocabularies and semantics in systems biology
text, January 2011


Open source computer algebra systems: GAP
journal, June 2010


Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models
journal, February 2011

  • Schellenberger, Jan; Lewis, Nathan E.; Palsson, Bernhard Ø.
  • Biophysical Journal, Vol. 100, Issue 3
  • DOI: 10.1016/j.bpj.2010.12.3707

Basic and applied uses of genome‐scale metabolic network reconstructions of Escherichia coli
journal, January 2013

  • McCloskey, Douglas; Palsson, Bernhard Ø; Feist, Adam M.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.18

What is flux balance analysis?
journal, March 2010

  • Orth, Jeffrey D.; Thiele, Ines; Palsson, Bernhard Ø
  • Nature Biotechnology, Vol. 28, Issue 3
  • DOI: 10.1038/nbt.1614

Constraint-based models predict metabolic and associated cellular functions
journal, January 2014

  • Bordbar, Aarash; Monk, Jonathan M.; King, Zachary A.
  • Nature Reviews Genetics, Vol. 15, Issue 2
  • DOI: 10.1038/nrg3643

Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans
journal, January 2011

  • Satish Kumar, Vinay; Ferry, James G.; Maranas, Costas D.
  • BMC Systems Biology, Vol. 5, Issue 1
  • DOI: 10.1186/1752-0509-5-28

Improving Collaboration by Standardization Efforts in Systems Biology
journal, December 2014

  • Dräger, Andreas; Palsson, Bernhard Ø.
  • Frontiers in Bioengineering and Biotechnology, Vol. 2
  • DOI: 10.3389/fbioe.2014.00061

Works referencing / citing this record:

Integrated Host-Pathogen Metabolic Reconstructions
book, December 2017


MEMOTE for standardized genome-scale metabolic model testing
journal, March 2020

  • Lieven, Christian; Beber, Moritz E.; Olivier, Brett G.
  • Nature Biotechnology, Vol. 38, Issue 3
  • DOI: 10.1038/s41587-020-0446-y

WormJam: A consensus C. elegans Metabolic Reconstruction and Metabolomics Community and Workshop Series
journal, April 2017


Genome-scale modeling of yeast: chronology, applications and critical perspectives
journal, July 2017


Community standards to facilitate development and address challenges in metabolic modeling
posted_content, July 2019

  • Carey, Maureen A.; Dräger, Andreas; Papin, Jason A.
  • bioRxiv
  • DOI: 10.1101/700112

Evaluation of reaction gap-filling accuracy by randomization
journal, February 2018


ModelExplorer - software for visual inspection and inconsistency correction of genome-scale metabolic reconstructions
journal, January 2019


A community-driven reconstruction of the Aspergillus niger metabolic network
journal, September 2018

  • Brandl, Julian; Aguilar-Pontes, Maria Victoria; Schäpe, Paul
  • Fungal Biology and Biotechnology, Vol. 5, Issue 1
  • DOI: 10.1186/s40694-018-0060-7

SteadyCom: Predicting microbial abundances while ensuring community stability
journal, May 2017

  • Chan, Siu Hung Joshua; Simons, Margaret N.; Maranas, Costas D.
  • PLOS Computational Biology, Vol. 13, Issue 5
  • DOI: 10.1371/journal.pcbi.1005539

Traceability, reproducibility and wiki-exploration for “à-la-carte” reconstructions of genome-scale metabolic models
journal, May 2018


COBRAme: A computational framework for genome-scale models of metabolism and gene expression
journal, July 2018


Metabolic models and gene essentiality data reveal essential and conserved metabolism in prokaryotes
journal, November 2018


iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE
journal, April 2018


Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells
journal, January 2018

  • Sen, Partho; Kemppainen, Esko; Orešič, Matej
  • Frontiers in Molecular Biosciences, Vol. 4
  • DOI: 10.3389/fmolb.2017.00096

Personalized Cardiovascular Disease Prediction and Treatment—A Review of Existing Strategies and Novel Systems Medicine Tools
journal, January 2016


MEMOTE for standardized genome-scale metabolic model testing
text, January 2020


Inferring Biochemical Reactions and Metabolite Structures to Understand Metabolic Pathway Drift
journal, February 2020


Evaluation of reaction gap-filling accuracy by randomization
journal, February 2018


ModelExplorer - software for visual inspection and inconsistency correction of genome-scale metabolic reconstructions
journal, January 2019


A community-driven reconstruction of the Aspergillus niger metabolic network
journal, September 2018

  • Brandl, Julian; Aguilar-Pontes, Maria Victoria; Schäpe, Paul
  • Fungal Biology and Biotechnology, Vol. 5, Issue 1
  • DOI: 10.1186/s40694-018-0060-7

SteadyCom: Predicting microbial abundances while ensuring community stability
journal, May 2017

  • Chan, Siu Hung Joshua; Simons, Margaret N.; Maranas, Costas D.
  • PLOS Computational Biology, Vol. 13, Issue 5
  • DOI: 10.1371/journal.pcbi.1005539

COBRAme: A computational framework for genome-scale models of metabolism and gene expression
journal, July 2018


Metabolic models and gene essentiality data reveal essential and conserved metabolism in prokaryotes
journal, November 2018


MEMOTE for standardized genome-scale metabolic model testing
text, January 2020


Editorial: Current Challenges in Modeling Cellular Metabolism
journal, November 2015

  • Machado, Daniel; Zhuang, Kai H.; Sonnenschein, Nikolaus
  • Frontiers in Bioengineering and Biotechnology, Vol. 3
  • DOI: 10.3389/fbioe.2015.00193

iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE
journal, April 2018


Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells
journal, January 2018

  • Sen, Partho; Kemppainen, Esko; Orešič, Matej
  • Frontiers in Molecular Biosciences, Vol. 4
  • DOI: 10.3389/fmolb.2017.00096

Personalized Cardiovascular Disease Prediction and Treatment—A Review of Existing Strategies and Novel Systems Medicine Tools
journal, January 2016