DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of Ni-Rich Thin-Film Cathode as Model System for Lithium Ion Batteries

Abstract

We demonstrate a process to prepare model electrodes of the Ni-rich layered compound LiNi0.6Mn0.2Co0.2O2. These thin-film cathodes are compared with the composite materials to demonstrate the system is a viable platform for isolating interfacial phenomena between the electrolyte and active material without the influence of binders and conductive additives. The appropriate choice of heterolayers was found to influence the preferential orientation of the (101) and (104) planes relative to the (003) plane of the layered R-3m crystal structure, enhancing Li+ diffusion and improving electrochemical performance. The addition of a Co interlayer between the Pt current collecting layer and alumina substrate increased the (101) and (104) texturing of the 500 nm Ni-rich film and allowed cells to deliver greater than 50% of their theoretical capacity. This work provides an architecture for isolating complex mechanisms of active materials that suffer from surface reconstruction and degradation in electrochemical cells.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [3]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [5]
  1. Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Graduate Education; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Environmental Sciences Directorate
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  6. Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Graduate Education; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Environmental Sciences Directorate
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1495961
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Energy Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 2; Journal ID: ISSN 2574-0962
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; cathode−electrolyte interface; magnetron sputter deposition; Ni-rich electrode; solid-state lithium ion battery; thin film

Citation Formats

Phillip, Nathan D., Ruther, Rose E., Sang, Xiahan, Wang, Yongqiang, Unocic, Raymond R., Westover, Andrew S., Daniel, Claus, and Veith, Gabriel M. Synthesis of Ni-Rich Thin-Film Cathode as Model System for Lithium Ion Batteries. United States: N. p., 2019. Web. doi:10.1021/acsaem.8b01982.
Phillip, Nathan D., Ruther, Rose E., Sang, Xiahan, Wang, Yongqiang, Unocic, Raymond R., Westover, Andrew S., Daniel, Claus, & Veith, Gabriel M. Synthesis of Ni-Rich Thin-Film Cathode as Model System for Lithium Ion Batteries. United States. https://doi.org/10.1021/acsaem.8b01982
Phillip, Nathan D., Ruther, Rose E., Sang, Xiahan, Wang, Yongqiang, Unocic, Raymond R., Westover, Andrew S., Daniel, Claus, and Veith, Gabriel M. Tue . "Synthesis of Ni-Rich Thin-Film Cathode as Model System for Lithium Ion Batteries". United States. https://doi.org/10.1021/acsaem.8b01982. https://www.osti.gov/servlets/purl/1495961.
@article{osti_1495961,
title = {Synthesis of Ni-Rich Thin-Film Cathode as Model System for Lithium Ion Batteries},
author = {Phillip, Nathan D. and Ruther, Rose E. and Sang, Xiahan and Wang, Yongqiang and Unocic, Raymond R. and Westover, Andrew S. and Daniel, Claus and Veith, Gabriel M.},
abstractNote = {We demonstrate a process to prepare model electrodes of the Ni-rich layered compound LiNi0.6Mn0.2Co0.2O2. These thin-film cathodes are compared with the composite materials to demonstrate the system is a viable platform for isolating interfacial phenomena between the electrolyte and active material without the influence of binders and conductive additives. The appropriate choice of heterolayers was found to influence the preferential orientation of the (101) and (104) planes relative to the (003) plane of the layered R-3m crystal structure, enhancing Li+ diffusion and improving electrochemical performance. The addition of a Co interlayer between the Pt current collecting layer and alumina substrate increased the (101) and (104) texturing of the 500 nm Ni-rich film and allowed cells to deliver greater than 50% of their theoretical capacity. This work provides an architecture for isolating complex mechanisms of active materials that suffer from surface reconstruction and degradation in electrochemical cells.},
doi = {10.1021/acsaem.8b01982},
journal = {ACS Applied Energy Materials},
number = 2,
volume = 2,
place = {United States},
year = {Tue Jan 22 00:00:00 EST 2019},
month = {Tue Jan 22 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
journal, June 2017


Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches
journal, February 2015


Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications
journal, September 2003


Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes: I. Nickel-Rich, LiNi
journal, December 2016

  • Schipper, Florian; Erickson, Evan M.; Erk, Christoph
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0351701jes

Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon
journal, September 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 19
  • DOI: 10.1021/acs.jpclett.7b01927

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Electron Spectroscopy Study of Li[Ni,Co,Mn]O 2 /Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications
journal, April 2015

  • Cherkashinin, Gennady; Motzko, Markus; Schulz, Natalia
  • Chemistry of Materials, Vol. 27, Issue 8
  • DOI: 10.1021/cm5047534

Studies of Aluminum-Doped LiNi 0.5 Co 0.2 Mn 0.3 O 2 : Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics
journal, January 2015

  • Aurbach, Doron; Srur-Lavi, Onit; Ghanty, Chandan
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0681506jes

Bulk-Type All Solid-State Batteries with 5 V Class LiNi 0.5 Mn 1.5 O 4 Cathode and Li 10 GeP 2 S 12 Solid Electrolyte
journal, April 2016


Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries
journal, May 2016

  • Mohanty, Debasish; Dahlberg, Kevin; King, David M.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26532

Studies of the Effect of High Voltage on the Impedance and Cycling Performance of Li[Ni 0.4 Mn 0.4 Co 0.2 ]O 2 /Graphite Lithium-Ion Pouch Cells
journal, January 2015

  • Nelson, K. J.; d'Eon, G. L.; Wright, A. T. B.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0831506jes

Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use
journal, December 2009

  • Xing, Lidan; Li, Weishan; Wang, Chaoyang
  • The Journal of Physical Chemistry B, Vol. 113, Issue 52
  • DOI: 10.1021/jp9074064

Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes
journal, April 2013

  • Borodin, Oleg; Behl, Wishvender; Jow, T. Richard
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp400527c

Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries
journal, August 2017

  • Giordano, Livia; Karayaylali, Pinar; Yu, Yang
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 16
  • DOI: 10.1021/acs.jpclett.7b01655

The truth about the 1st cycle Coulombic efficiency of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) cathodes
journal, January 2016

  • Kasnatscheew, J.; Evertz, M.; Streipert, B.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 5
  • DOI: 10.1039/C5CP07718D

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Oxidation processes on conducting carbon additives for lithium-ion batteries
journal, November 2012

  • La Mantia, Fabio; Huggins, Robert A.; Cui, Yi
  • Journal of Applied Electrochemistry, Vol. 43, Issue 1
  • DOI: 10.1007/s10800-012-0499-9

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

LiNi 0.4 Mn 1.6 O 4 /Electrolyte and Carbon Black/Electrolyte High Voltage Interfaces: To Evidence the Chemical and Electronic Contributions of the Solvent on the Cathode-Electrolyte Interface Formation
journal, January 2012

  • Demeaux, Julien; Caillon-Caravanier, Magaly; Galiano, Hervé
  • Journal of The Electrochemical Society, Vol. 159, Issue 11
  • DOI: 10.1149/2.052211jes

Solid-state thin-film rechargeable batteries
journal, February 2005


Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries
journal, March 1993


Preferred Orientation of Polycrystalline LiCoO[sub 2] Films
journal, January 2000

  • Bates, J. B.; Dudney, N. J.; Neudecker, B. J.
  • Journal of The Electrochemical Society, Vol. 147, Issue 1
  • DOI: 10.1149/1.1393157

Probing Surface Chemistry Changes Using LiCoO 2 -only Electrodes in Li-Ion Batteries
journal, January 2018

  • Gauthier, Magali; Karayaylali, Pinar; Giordano, Livia
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0431807jes

Fabrication and characterization of Li–Mn–Ni–O sputtered thin film high voltage cathodes for Li-ion batteries
journal, August 2012


Synthesis of Single Crystal LiNi 0.6 Mn 0.2 Co 0.2 O 2 with Enhanced Electrochemical Performance for Lithium Ion Batteries
journal, January 2018

  • Li, Hongyang; Li, Jing; Ma, Xiaowei
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0951805jes

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li 1 - x Co 1/ 3 Ni 1/3 Mn 1/3 O 2 ( x = 0 → 1)
journal, April 2006

  • Yin, S. -C.; Rho, Y. -H.; Swainson, I.
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm0511769

Role of Superexchange Interaction on Tuning of Ni/Li Disordering in Layered Li(Ni x Mn y Co z )O 2
journal, November 2017


Structure-related intercalation behaviour of LiCoO2 films
journal, December 2002


Columnar microstructure in vapor-deposited thin films
journal, December 1977


Characterization of Sputter-Deposited LiCoO 2 Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery
journal, May 2017

  • Kim, Hee-Soo; Oh, Yoong; Kang, Ki Hoon
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 19
  • DOI: 10.1021/acsami.6b15305

Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by wet-chemical method
journal, September 2010


Nanostructured Oxides in Chemistry:  Characterization and Properties
journal, September 2004

  • Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.
  • Chemical Reviews, Vol. 104, Issue 9
  • DOI: 10.1021/cr030032f

Structural evolution and capacity degradation mechanism of LiNi0.6Mn0.2Co0.2O2 cathode materials
journal, October 2018


Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition
journal, September 2006


Works referencing / citing this record: