DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries

Abstract

Thermal runaway is always a troublesome problem that hinders the safe application of high energy lithium-ion batteries. There is an urgent need to interpret the voltage and temperature changes and their underlying mechanisms during thermal runaway, in order to guide the safe design of a battery system. This paper is dedicated to building a coupled electrochemical-thermal model that can well predict the voltage drop and temperature increase during thermal runaway. The model can capture the underlying mechanism of 1) the capacity degradation under high temperature; 2) the internal short circuit caused by the thermal failure of the separator; and 3) the chemical reactions of the cell components that release heat under extreme temperature. The model is validated using by experimental data, therefore the modeling analysis has high fidelity. We employ the model to analyze 1) the capacity degradation under extreme temperature; 2) the influence of the SEI decomposition and regeneration on the thermal runaway behavior; 3) the heat generation by internal short circuit in the thermal runaway process. In conclusion, the discussions presented here help extend the usage of lithium-ion batteries at extreme high temperature (>80 degrees C), and guide the safe design of lithium-ion batteries with less hazard levelmore » during thermal runaway.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [2]
  1. Tsinghua Univ., Beijing (People's Republic of China)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1492506
Report Number(s):
NREL/JA-5400-73179
Journal ID: ISSN 0013-4651
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 165; Journal Issue: 16; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; energy storage; battery safety; lithium-ion batteries; thermal runaway

Citation Formats

Feng, Xuning, He, Xiangming, Ouyang, Minggao, Wang, Li, Lu, Languang, Ren, Dongsheng, and Santhanagopalan, Shriram. A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries. United States: N. p., 2018. Web. doi:10.1149/2.0311816jes.
Feng, Xuning, He, Xiangming, Ouyang, Minggao, Wang, Li, Lu, Languang, Ren, Dongsheng, & Santhanagopalan, Shriram. A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries. United States. https://doi.org/10.1149/2.0311816jes
Feng, Xuning, He, Xiangming, Ouyang, Minggao, Wang, Li, Lu, Languang, Ren, Dongsheng, and Santhanagopalan, Shriram. Thu . "A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries". United States. https://doi.org/10.1149/2.0311816jes. https://www.osti.gov/servlets/purl/1492506.
@article{osti_1492506,
title = {A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries},
author = {Feng, Xuning and He, Xiangming and Ouyang, Minggao and Wang, Li and Lu, Languang and Ren, Dongsheng and Santhanagopalan, Shriram},
abstractNote = {Thermal runaway is always a troublesome problem that hinders the safe application of high energy lithium-ion batteries. There is an urgent need to interpret the voltage and temperature changes and their underlying mechanisms during thermal runaway, in order to guide the safe design of a battery system. This paper is dedicated to building a coupled electrochemical-thermal model that can well predict the voltage drop and temperature increase during thermal runaway. The model can capture the underlying mechanism of 1) the capacity degradation under high temperature; 2) the internal short circuit caused by the thermal failure of the separator; and 3) the chemical reactions of the cell components that release heat under extreme temperature. The model is validated using by experimental data, therefore the modeling analysis has high fidelity. We employ the model to analyze 1) the capacity degradation under extreme temperature; 2) the influence of the SEI decomposition and regeneration on the thermal runaway behavior; 3) the heat generation by internal short circuit in the thermal runaway process. In conclusion, the discussions presented here help extend the usage of lithium-ion batteries at extreme high temperature (>80 degrees C), and guide the safe design of lithium-ion batteries with less hazard level during thermal runaway.},
doi = {10.1149/2.0311816jes},
journal = {Journal of the Electrochemical Society},
number = 16,
volume = 165,
place = {United States},
year = {Thu Dec 06 00:00:00 EST 2018},
month = {Thu Dec 06 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes: I. Nickel-Rich, LiNi
journal, December 2016

  • Schipper, Florian; Erickson, Evan M.; Erk, Christoph
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0351701jes

Simulation of capacity fade in lithium-ion batteries
journal, January 2003


Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading
journal, December 2017


Mechanical integrity of 18650 lithium-ion battery module: Packing density and packing mode
journal, September 2018


Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry
journal, June 2014


Scenario-based prediction of Li-ion batteries fire-induced toxicity
journal, June 2016


Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method
journal, September 2014


Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells
journal, January 2017

  • Finegan, Donal P.; Tjaden, Bernhard; M. M. Heenan, Thomas
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.1501713jes

Integrated computation model of lithium-ion battery subject to nail penetration
journal, December 2016


Capacity Fade Model for Spinel LiMn 2 O 4 Electrode
journal, November 2012

  • Dai, Yiling; Cai, Long; White, Ralph E.
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.026302jes

Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications
journal, October 2016


An accelerated calendar and cycle life study of Li-ion cells
journal, October 2001


Investigation of Short-Circuit Scenarios in a Lithium-Ion Battery Cell
journal, January 2012

  • Zavalis, Tommy Georgios; Behm, Mårten; Lindbergh, Göran
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.096206jes

Multi-scale study of thermal stability of lithiated graphite
journal, January 2011

  • Chen, Zonghai; Qin, Yan; Ren, Yang
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01786a

Mechanism of Thermal Runaway in Lithium-Ion Cells
journal, January 2018

  • Galushkin, N. E.; Yazvinskaya, N. N.; Galushkin, D. N.
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0611807jes

Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm
journal, August 2018


Thermal runaway mechanism of lithium ion battery for electric vehicles: A review
journal, January 2018


Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing
journal, January 2018


Internal Short Circuit Trigger Method for Lithium-Ion Battery Based on Shape Memory Alloy
journal, January 2017

  • Zhang, Mingxuan; Du, Jiuyu; Liu, Lishuo
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.0731713jes

Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway
journal, October 2017


A 3D thermal runaway propagation model for a large format lithium ion battery module
journal, November 2016


Evaluation of mechanical abuse techniques in lithium ion batteries
journal, February 2014


Modelling Li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations
journal, January 2017

  • Coman, Paul T.; Darcy, Eric C.; Veje, Christian T.
  • Journal of The Electrochemical Society, Vol. 164, Issue 4
  • DOI: 10.1149/2.0341704jes

Internal short circuit detection for battery pack using equivalent parameter and consistency method
journal, October 2015


AC-impedance measurements during thermal runaway process in several lithium/polymer batteries
journal, June 2003


Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model
journal, February 2014


Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions
journal, November 2017


Synthesize battery degradation modes via a diagnostic and prognostic model
journal, December 2012


The combustion behavior of large scale lithium titanate battery
journal, January 2015

  • Huang, Peifeng; Wang, Qingsong; Li, Ke
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep07788

Characterization of large format lithium ion battery exposed to extremely high temperature
journal, December 2014


Effect of Anode Film Resistance on the Charge/Discharge Capacity of a Lithium-Ion Battery
journal, January 2003

  • Christensen, J.; Newman, J.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1612501

Thermal runaway caused fire and explosion of lithium ion battery
journal, June 2012


Oxygen Evolution in Overcharged LixNi1/3Co1/3Mn1/3O2 Electrode and Its Thermal Analysis Kinetics
journal, August 2011

  • Wang, Haiyan; Tang, Aidong; Huang, Kelong
  • Chinese Journal of Chemistry, Vol. 29, Issue 8
  • DOI: 10.1002/cjoc.201180284

Cycle-life model for graphite-LiFePO4 cells
journal, April 2011


Development of First Principles Capacity Fade Model for Li-Ion Cells
journal, January 2004

  • Ramadass, P.; Haran, Bala; Gomadam, Parthasarathy M.
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1634273

A review on the key issues for lithium-ion battery management in electric vehicles
journal, March 2013


Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental
journal, June 1999

  • Richard, M. N.
  • Journal of The Electrochemical Society, Vol. 146, Issue 6
  • DOI: 10.1149/1.1391893

Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module
journal, February 2015


Calendar Aging of Lithium-Ion Batteries: I. Impact of the Graphite Anode on Capacity Fade
journal, January 2016

  • Keil, Peter; Schuster, Simon F.; Wilhelm, Jörn
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0411609jes

Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries
journal, August 2014


Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit
journal, October 2018


Numerical investigation of kinetic mechanism for runaway thermo-electrochemistry in lithium-ion cells
journal, September 2014


The Development and Future of Lithium Ion Batteries
journal, December 2016

  • Blomgren, George E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0251701jes

Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries
journal, September 2007


Analysis on the Fault Features for Internal Short Circuit Detection Using an Electrochemical-Thermal Coupled Model
journal, January 2018

  • Feng, X.; He, X.; Lu, L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0501802jes

Thermal Modelling of Cell-to-Cell Fire Propagation and Cascading Thermal Runaway Failure Effects for Lithium-Ion Battery Cells and Modules Using Fire Walls
journal, January 2016

  • Larsson, Fredrik; Anderson, Johan; Andersson, Petra
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0131614jes

Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components
journal, October 2018


Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics
journal, January 2012

  • Deshpande, Rutooj; Verbrugge, Mark; Cheng, Yang-Tse
  • Journal of The Electrochemical Society, Vol. 159, Issue 10
  • DOI: 10.1149/2.049210jes

Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
journal, January 2001

  • Hatchard, T. D.; MacNeil, D. D.; Basu, A.
  • Journal of The Electrochemical Society, Vol. 148, Issue 7
  • DOI: 10.1149/1.1377592

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

A three-dimensional thermal abuse model for lithium-ion cells
journal, July 2007


A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery
journal, March 2016


Cyclable Lithium and Capacity Loss in Li-Ion Cells
journal, January 2005

  • Christensen, John; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 4
  • DOI: 10.1149/1.1870752

Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes
journal, February 2018


Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model
journal, January 2018

  • Ren, Dongsheng; Smith, Kandler; Guo, Dongxu
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.0661810jes

A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell
journal, March 2016


A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification
journal, April 2014


A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation
journal, October 2015


Modeling Vaporization, Gas Generation and Venting in Li-Ion Battery Cells with a Dimethyl Carbonate Electrolyte
journal, January 2017

  • Coman, Paul T.; Mátéfi-Tempfli, Stefan; Veje, Christian T.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.0631709jes

Fusing Phenomenon of Lithium-Ion Battery Internal Short Circuit
journal, January 2017

  • Zhang, Mingxuan; Liu, Lishuo; Stefanopoulou, Anna
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.1721712jes

Lithium Dendrite Growth in Glassy and Rubbery Nanostructured Block Copolymer Electrolytes
journal, December 2014

  • Schauser, Nicole S.; Harry, Katherine J.; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0511503jes

Modelling of cracks developed in lithium-ion cells under mechanical loading
journal, January 2015

  • Sahraei, Elham; Kahn, Michael; Meier, Joseph
  • RSC Advances, Vol. 5, Issue 98
  • DOI: 10.1039/C5RA17865G

Abuse behavior of high-power, lithium-ion cells
journal, January 2003


Online internal short circuit detection for a large format lithium ion battery
journal, January 2016


Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles
journal, February 2018


In-operando high-speed tomography of lithium-ion batteries during thermal runaway
journal, April 2015

  • Finegan, Donal P.; Scheel, Mario; Robinson, James B.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7924

Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones
journal, February 2018

  • Duh, Yih-Shing; Lin, Kai Hsuan; Kao, Chen-Shan
  • Journal of Thermal Analysis and Calorimetry, Vol. 132, Issue 3
  • DOI: 10.1007/s10973-018-7077-2

Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
journal, January 2015

  • Lopez, Carlos F.; Jeevarajan, Judith A.; Mukherjee, Partha P.
  • Journal of The Electrochemical Society, Vol. 162, Issue 9
  • DOI: 10.1149/2.0921509jes

Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries
journal, February 2018


Analysis of internal short-circuit in a lithium ion cell
journal, October 2009

  • Santhanagopalan, Shriram; Ramadass, Premanand; Zhang, John (Zhengming)
  • Journal of Power Sources, Vol. 194, Issue 1, p. 550-557
  • DOI: 10.1016/j.jpowsour.2009.05.002

Modeling Internal Shorting Process in Large-Format Li-Ion Cells
journal, January 2015

  • Zhao, Wei; Luo, Gang; Wang, Chao-Yang
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1031507jes

Structural Changes and Thermal Stability of Charged LiNi x Mn y Co z O 2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy
journal, December 2014

  • Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 24
  • DOI: 10.1021/am506712c

Vehicle Battery Safety Roadmap Guidance
report, October 2012


Works referencing / citing this record: