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3Laboratoire International Associé Centre National de la Recherche Scientifique and University of Illinois
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Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample
the configurational space of complex molecular systems. However, brute-force MD often converges
slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been
proposed to address this problem by effectively smoothing the potential energy surface. However, in
order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then
rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering
replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator com-
bining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium
MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic
system is dynamically propagated for some period of time using standard equilibrium MD on the
correct potential energy surface; (ii) the system is then propagated for a brief period of time during
what is referred to as a “boosting phase,” via a time-dependent Hamiltonian that is evolved toward
the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the
resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a
Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescrip-
tion is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling
propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann dis-
tribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the
sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with
the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecu-
lar systems indicate that the method can yield a significant speedup. Published by AIP Publishing.
https://doi.org/10.1063/1.5004154

I. INTRODUCTION

Classical molecular dynamics (MD) and Metropolis-
Hasting Monte Carlo (MC) simulations based on detailed
atomic models are powerful tools to study the properties of
complex biomolecular systems.1–3 While simulations based
on realistic all-atom (AA) models arguably offer the most
detailed information, such models evolve on a complex and
rugged energy surface and their dynamics are often bur-
dened by a host of slow processes. For this reason, achiev-
ing an adequate sampling of all the relevant configurations

a)Electronic mail: dsuh@uchicago.edu
b)Electronic mail: brian.radak@anl.gov
c)Electronic mail: chipot@ks.uiuc.edu
d)Electronic mail: roux@uchicago.edu. URL: http://thallium.bsd.uchicago.

edu/RouxLab/.

of a system from straight MD or MC simulation is often
challenging.

A number of schemes have been proposed to enhance
sampling and accelerate the exploration of configurational
space by smoothing the underlying potential energy sur-
face of a system.4–19 Among those schemes, two simple
and attractive ideas are the hyperdynamics accelerated MD
(aMD)9,10 and the replica-exchange with solute tempering
(REST2) algorithms.16 However, to recover the Boltzmann
equilibrium distribution of the proper Hamiltonian, one must
either carry out a post-hoc reweighting analysis or generate
the simulation within the context of a Hamiltonian temper-
ing replica-exchange scheme involving multiple copies of
the system.20 While the former suffers from most configu-
rations being statistically meaningless after reweighting, the
latter substantially increases the computational cost of the
simulation.
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One avenue to address these issues is to carry out the
propagation in such a way that the resulting configurational
sampling reflects the proper Hamiltonian. For example, it is
possible to reformulate the self-guided Langevin dynamics
(SGLD) in such a way as to restore microscopic detailed bal-
ance.19 In the present effort, we wish to explore hybrid
dynamical propagation schemes that combine the strength of
non-equilibrium molecular dynamics (neMD) and Metropo-
lis Monte Carlo (MC) to achieve enhanced sampling.21–26

In hybrid neMD-MC, the value of some chosen variable or
coupling parameter is altered gradually in a time-dependent
and controlled fashion, while the remaining degrees of free-
dom are allowed to evolve freely according to the normal
equations of motion. The configuration generated by such
a non-equilibrium “switching” trajectory is then treated as
a candidate that must be either accepted or rejected via a
Metropolis criterion to generate the equilibrium Boltzmann
distribution.

The hybrid neMD-MC propagator designed here com-
prises an “equilibrium phase,” a “boosting phase,” and a
“Metropolis MC step”:

(i) Equilibrium phase: An atomic system is dynami-
cally propagated for some period of time using stan-
dard equilibrium MD on the correct potential energy
surface.

(ii) Boosting phase: The system is then propagated for a
brief period of time τ via a time-dependent Hamiltonian
that is evolved toward the perturbed potential energy
surface and then back to the correct potential energy
surface.

(iii) Metropolis MC step: The resulting configuration at the
end of the neMD trajectory is then accepted or rejected
according to a Metropolis criterion before returning to
step 1. Using a symmetric switching schedule for ramp-
ing the Hamiltonian up and down, as well as keeping
detailed balance with symmetric two-end momentum
reversal, ensures that the algorithm strictly produces a
Boltzmann equilibrium distribution.27

In contrast to the hybrid neMD-MC simulations guided by a
coarse-grained (CG) model introduced previously,25 the algo-
rithm described above relies on a perturbed Hamiltonian, but
does not require the construction of a CG model to gener-
ate the target configuration. The hybrid neMD-MC sampling
propagator implemented here rests on two schemes during
the boosting phase, the so-called hyperdynamics accelerated
MD (aMD)9,10 and the replica-exchange with solute temper-
ing (REST2).16 Nevertheless, the strategy allows virtually
any number of variations. Furthermore, the hybrid propaga-
tor may be naturally combined with a number of enhanced
sampling strategies and free energy techniques.17 For exam-
ple, preliminary results are also shown using a time-dependent
bias along a collective variable determined via the adaptive
biasing force (ABF) approach.28 In Sec. II, we formulate
the theoretical basis of the hybrid neMD-MC sampling prop-
agator. The performance of the method is then illustrated
with specific biomolecular systems. Our results indicate that
the method can yield a significant speedup for biomolecular
systems.

II. THEORY AND COMPUTATIONAL METHODS
A. Theory

Let us consider a classical system with time-dependent
Hamiltonian H [x; λ(t)], where x represents all coordi-
nates and momenta and λ(t) is a time-dependent coupling
parameter. Here, λ = 0 denotes the unperturbed Hamiltonian,
H0, while λ = 1 corresponds to the perturbed Hamiltonian,
H1, offering the maximum boost. In the conventional hybrid
neMD-MC scheme for alchemical changes to the Hamiltonian,
one varies λ from 0 to 1 in a neMD trajectory in order to gen-
erate a proposed move from x to x′. The final configuration at
the end of the non-equilibrium switching period corresponds
to a different Hamiltonian. For example, in constant-pH sim-
ulations based on a hybrid neMD-MC algorithm, this could
be the unprotonated or protonated state of a residue.21,22 In
contrast, the boosting phase of the hybrid neMD-MC propa-
gator starts and ends with the same unperturbed Hamiltonian,
H0. In other words, the system is first brought to a per-
turbed Hamiltonian, H1, associated with a potential energy
surface that is smoother and easier to sample (λ = 0 →
λ = 1) and then brought back to the unperturbed Hamiltonian
H0 (λ = 1 → λ = 0). A random walk in phase space for a
system at thermodynamic equilibrium must obey microscopic
detailed balance,

π(x)Tp(x→ x′)Ta(x→ x′) = π(x′)Tp(x′ → x)Ta(x′ → x),

(1)

where π(x) is the equilibrium probability of being in state x,
Tp(x → x′) is the transition probability for generating a pro-
posed move from x to x′, and T a(x → x′) is the transition
probability for accepting a proposed move from x to x′. Here,
π(x) = Q�1 exp[�H(x)/kBT ], where Q is the canonical partition
function. After the boosting phase is completed, the energy dif-
ference ∆H = H [xB, λ = 0]−H [xA, λ = 0] is calculated, and
a standard Metropolis acceptance criterion

Ta = min
[
1, e−β∆H

]
(2)

is used to enforce microscopic detailed balance (β ≡ 1/kBT,
where kB is Boltzmann’s constant and T is the absolute tem-
perature). The hybrid propagator with the different stages is
depicted schematically in Fig. 1.

A “symmetric two-ends momentum reversal” pre-
scription is used in association with the non-equilibrium
switches,22,25,27 by which one randomly chooses with equal

FIG. 1. Hybrid neMD-MC propagator scheme comprising an equilibrium
MD phase, a non-equilibrium MD boosting phase, and an acceptance or
rejection via a Metropolis MC step.
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probability to carry out these trajectories as a “forward” or
“backward” MD propagation. Forward propagation means
that the non-equilibrium switch trajectory is simply contin-
ued using current positions and momenta, whereas backward
propagation means that the momenta of the system are flipped
at the beginning and at the end of the non-equilibrium switch
trajectory (i.e., it is equivalent to a propagation going back in
time). It was shown previously that the symmetric two-ends
momentum reversal prescription increases the sampling rate
by reducing the likelihood that different regions of configura-
tional space remain isolated from one another.25,27 The energy
difference ∆H in Eq. (2) may be further decomposed as a sum
of two terms, q andw, where q is the heat exchange between the
system and an external heat bath during propagation and w is
the non-equilibrium work done during the perturbation. Since
it is not trivial to keep track of heat-exchange during stochas-
tic integration (such as Langevin dynamics), we instead opt
to use a deterministic integrator such that the heat exchange
is formally zero. The energy difference between states A and
B is equal to the non-equilibrium work applied during the
trajectory augmented by the shadow work done. The shadow
work corresponds to the non-equilibrium work caused by the
integrator error associated with the finite time step.29 During
the boosting phase, we used a schedule symmetric in time
for perturbing the Hamiltonian by the coupling parameter,
λ(t),

λ(t; τ, τ1) =




t/τ1 (0 ≤ t < τ1),

1 (τ1 ≤ t < τ − τ1),

(τ − t)/τ1 (τ − τ1 ≤ t < τ),

(3)

where τ is the total switching time and τ1 is the ramping time
(see Fig. 1). The middle region, during which λ is a constant
equal to 1, is the boosting phase that lasts for τ � 2τ1.

In practice, the time-dependent coupling parameter λ(t)
was implemented via stepwise variations with a sequence of
ns discrete steps,

λ(t; τ, τ1)

=




0, 0 ≤ t < τ1/ns,

1/ns, τ1/ns ≤ t < 2τ1/ns,

. . .

(ns − 1)/ns, τ1(ns − 1)/ns ≤ t < τ1,

1, τ1 ≤ t < τ − τ1,

1 − 1/ns, τ − τ1 + τ1/ns ≤ t < τ − τ1 + 2τ1/ns,

. . .

1/ns, τ − 2τ1/ns ≤ t < τ − τ1/ns,

0, τ − τ1/ns ≤ t < τ

(4)

as depicted in Fig. 1 (see also the Tcl pseudocode in the
Appendix).

The hybrid neMD-MC propagator algorithm was imple-
mented according to the following steps:

(i) The system is dynamically propagated for some period
of time using unbiased equilibrium MD with the
unperturbed Hamiltonian.

(ii) The forward/backward direction for the switch is ran-
domly chosen with equal probability for the neMD
switching trajectory; the momenta are flipped if a
backward propagation is chosen.

• The system is propagated via the time-
dependent Hamiltonian H[x, λ(t)] toward the
perturbed potential energy surface (λ = 0 →
λ = 1) in a time τ1.

• The system is propagated with the perturbed
Hamiltonian for some time to enhance barrier
crossings (λ = 1) for a time τ � 2τ1.

• The system is propagated via a time-dependent
Hamiltonian H(t) evolved back toward the
unperturbed Hamiltonian (λ = 1→ λ = 0) in a
time τ1.

• The momenta are flipped again if the switch
involved a backward propagation.

(iii) The resulting configuration is accepted or rejected
according to the Metropolis-Hasting criterion: If the
move is accepted, we repeat the cycle; if the move is
rejected, we return to the conformation at the end of
step (i).

The performance of the hybrid neMD-MC propagator depends
on our ability to generate a proposition likely to help overcome
the barriers in a rugged potential energy surface. For this pur-
pose, the parameters controlling the schedule, τ, τ1, and the
choice of the perturbed Hamiltonian, H1, are critical. Two pop-
ular perturbation schemes designed to enhance sampling by
deforming the potential energy surface were considered here
for the boosting phase. The first one is the accelerated MD
(aMD),9,10

UaMD[x, α, E] =




U[x], U[x] ≥ E,

U[x] +
(E − U[x])2

α + (E − U[x])
, U[x] < E,

(5)

where α is a tuning parameter that determines the depth of the
modified potential energy basins lying below the minimum
threshold energy E (the aMD potential is flat when U[x] is
equal or smaller than E if α is zero and increasingly unper-
turbed when α becomes very large).9,10 The aMD prescription
may be applied to the total potential energy function or to
various contributions such as the torsional potentials. In the
present study, we have used Eq. (5) to reduce the energy bar-
riers in the torsional potentials. To construct a time-dependent
Hamiltonian for the boosting phase of the hybrid-aMD prop-
agator, the threshold energy E was kept fixed while the tuning
parameter α in Eq. (5) was effectively replaced by α/λ(t), with
λ(t) following the symmetric schedule given in Eq. (3). The
singularity at the first step is avoided by setting E equal to
zero until λ(t) reaches its first non-zero value at time t ≥ τ1/ns

following Eq. (4).
The second perturbation scheme considered here is the

replica-exchange with solute tempering (REST2),16

UREST2[x, γ] = Uv + γUu + γ1/2Uuv, (6)

where Uv is the solvent potential energy, Uu is the solute
potential energy, and Uuv is the solute-solvent interaction
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potential energy. It should be noted that we use the acronym
REST2 here to indicate solute interaction tempering, even in
the absence of multiple replicas. Let the coupling parameter
γmax correspond to the maximum solute tempering allowed,
traditionally expressed as T /Tu in terms of an effective temper-
ature Tu ascribed to the solute.16 To construct a time-dependent
Hamiltonian for the boosting phase of the hybrid-REST2 prop-
agator, the coupling parameter γ in Eq. (6) was effectively
replaced by the time-dependent form γ(t) = λ(t)(γmax � 1) + 1,
with λ(t) following the symmetric schedule given in Eq. (3).
As a result, the Hamiltonian is not perturbed when λ = 0, and
the coupling parameter of the solute-tempering boost reaches
its maximum of γmax when λ = 1.

B. Computational methods

The hybrid neMD-MC propagator was tested on several
biologically relevant molecular systems. The first objective
of these tests is to show that the propagator does produce
the correct Boltzmann equilibrium distribution. The second
objective of these tests is to show that the propagator achieves
convergence of the equilibrium properties more rapidly than
simple unbiased MD. The hybrid neMD-MC propagator was
implemented as a general Tcl script for the simulation program
NAMD.30 The Tcl script is given in the Appendix.

The first test case is deca-alanine in vacuum with a dielec-
tric constant ε = 20. Eight individual 200-ns trajectories were
generated using (i) equilibrium MD, (ii) two hybrid propaga-
tors using either REST2 or aMD as a boost, (iii) two hybrid
propagators randomly accepting proposed moves by means
of mean-acceptance ratio from the corresponding propaga-
tors, and (iv) two accelerating schemes, namely, REST2 and
aMD. The equations of motion were integrated with a time
step of 1 fs. The temperature was maintained at 300 K using
Langevin dynamics with a damping coefficient of 1.0 ps�1.
Nonbonded short range interactions were truncated at 9 Å
with a switching function effective from 8 Å. The param-
eters of the switching schedule were set to teqMD = 5 ps,
τ = 5 ps, τ1 = 2 ps, number of switches ns = 39, max-
imum REST2 boost γ = 0.8, and maximum aMD boost
(E, α) = (50, 10). The CHARMM 22 protein force field31

was employed to model deca-alanine, allowing a direct com-
parison with a previous theoretical study.28 A second test case
considers again deca-alanine in vacuum, but this time with a
dielectric constant, ε , of 1. This system is normally difficult
to sample using simple unbiased equilibrium MD trajectories
because of the strong internal backbone-backbone hydrogen
bonds, making the usage of some form of importance sampling
strategy a necessity. Here, the adaptive biasing force (ABF)
method was considered.32,33 Results from ABF with standard
MD and from ABF with hybrid neMD-MC boosted by aMD
and REST2 were examined. Eight individual 40-ns trajec-
tories were generated for each case, using α-helix and C5-
extended conformation as initial coordinates. After optimiza-
tion, the switching schedule was set to teqMD = 7 ps, τ = 2 ps,
τ1 = 1 ps, number of switches ns = 18, maximum REST2
boost γ = 0.5, and maximum aMD boost (E, α) = (40, 1).
Extensive computations based on the multiple-walker ABF
method32,33 were performed to provide a reference potential of
mean force (PMF) that can be used to assess the converge of the

different methods. The computation was carried out with eight
independent walkers, corresponding to an aggregated simula-
tion time of 8 µs.

A third test case considers the folding/unfolding of the
acetyl and NH2 terminally capped (AAQAA)3 peptide sol-
vated in explicit water. The 15 residue peptide was simulated
using the hybrid-REST2 neMD-MC propagator. As a basis of
comparison, the system was also simulated with simple unbi-
ased MD, as well as multiple-copy REST2 and temperature
replica-exchange MD (TREMD) simulations.

For the optimization, different switching schedules were
tested while varying τ, τ1, the maximum boost (REST2 or
aMD), and number of switches. After optimization, the param-
eters of the switching schedule were set to teqMD = 2 ps,
τ = 24 ps, τ1 = 8 ps, number of switches ns = 790, and max-
imum REST2 boost γ = 0.7. The system was equilibrated at
300 K with initial structure of complete α-helical conforma-
tion solvated with 3964 water molecules in a cubic cell of
initial dimensions equal to 55 × 55 × 55 Å3. The equations
of motion were integrated with a time step of 2 fs. The tem-
perature was maintained at 300 K using Langevin dynamics
with a damping coefficient of 1 ps�1. Nonbonded short-range
interactions were truncated at 12 Å with a switching function
effective from 10 Å. The CHARMM 36 force field was used to
describe the peptide, with the TIP3P water model. The REST2
calculation was done with 10 replicas ranging up to the same
maximum boost of γ = 0.7 as in the hybrid neMD-MC sim-
ulations and exchange attempts every 0.2 ps. The TREMD
simulation was done with 32 replicas ranging from 278 K to
416 K and exchange attempts every 10 ps, matching exactly the
protocol of Best et al.34 However, the total length of the present
TREMD simulation is much shorter (1.875 ns per replica and
60 ns in total) than that of Best et al.34 (150 ns per replica
and 4.8 µs in total). To provide an objective comparison of the
actual computational cost of these single- and multiple-copy
approaches, the results are reported in terms of MD steps per
replica times the number of replica involved.

III. RESULTS AND DISCUSSION
A. Validation

We first examine the results for deca-alanine in vacuum
with a dielectric constant ε = 20. The main purpose of this test
is to validate the hybrid neMD-MC propagator. Because of the
high dielectric constant, this is a convenient toy model, easy to
sample directly by brute-force MD. The PMF as a function of
the end-to-end distance extracted from unbiased MD is shown
in Fig. 2. It is a double-well potential, with basins at 6 Å and
12 Å, separated by a small barrier of about 0.5 kcal/mol. The
PMF calculated using the hybrid propagator is also shown in
Fig. 2. The comparison shows that the hybrid method correctly
reproduces the PMF extracted from the unbiased MD trajec-
tory. The small error bars corresponding to a 99% confidence
interval are indicative of the high convergence. As expected,
the PMFs generated by pure REST2 and aMD without any
reweighting do not reproduce the correct result. The biased
PMFs nonetheless serve to display the overall free energy
surface when the system is propagated at the highest boost-
ing level using these two perturbation schemes designed to
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FIG. 2. Validation test using deca-alanine with dielectric constant of 20. SA-
Random stands for hybrid scheme that randomly accepts proposed moves
using the same mean acceptance ratio achieved from hybrid simulations.

enhance sampling by deforming the potential energy surface.
Finally, the random acceptance simulations with the same
mean acceptance ratio from the hybrid-aMD (0.1522 ± 0.002)
and hybrid-REST2 simulations (0.716 ± 0.003) deviate from
the correct PMF. This shows that the acceptance criterion with
the symmetric two-ends momentum reversal is critical to obey
detailed balance and obtain correct results.

B. Optimization

Generally, the efficiency of neMD-MC depends on max-
imizing the production of uncorrelated configurations while
trying to minimize the effort spent to generate these.26 The
main drawback of neMD-MC simulations is that each new
attempted MC move requires a non-equilibrium MD simula-
tion; a low acceptance rate necessarily implies that a large frac-
tion of computer time is discarded by the algorithm. Whereas
long switches might yield a high acceptance probability but
are computationally prohibitive, short switches are computa-
tionally inexpensive, but expected to yield vanishingly low
acceptance probabilities. The most efficient algorithm is obvi-
ously a compromise balancing between these two opposing
factors. It is generally unclear as to how to systematically
achieve this balance.

In conventional neMD-MC schemes, the switch is meant
to allow transitions between two different discrete states, thus
longer switch times lead to higher acceptance rates as the
transformation approaches the adiabatic limit.26 In a previ-
ous study of a constant-pH algorithm, an optimal switching
time for changing the protonation state of propionic acid in an
explicit solvent was determined to be about 15 ps.26 How-
ever, the hybrid propagator described here is not designed
to produce transitions between discrete states. One implica-
tion is that a high acceptance probability, i.e., the number of
accepted moves over the total number of attempted moves,
does not guarantee that one is using the most effective perturba-
tion scheme and boosting schedule. For example, the accepted
candidate configuration may be too close to the starting con-
figuration if the perturbation is too mild. Within the constraint
of a fixed budget of computer time, increasing indefinitely the
switching time also implies a concomitant decrease in the time
available to perform equilibrium MD. Under these premises,
simply maximizing the acceptance probability is not a useful
criterion for optimizing efficiency.

FIG. 3. Conformational evolution speed for deca-alanine in vacuum with a
dielectric constant of 5 as a function of the boosting schedule. The conforma-
tional evolution speed is root-mean-square deviation (RMSD) of the peptide
(calculated from all heavy atoms) at a time t relative to its configuration at
a previous time t �∆T. For each case, the time interval ∆T was set to its
switching time. The blue line is a fitted function for visual guide.

Several factors could affect the efficiency of the hybrid
neMD-MC scheme described here. As a simple measure of
efficiency of the hybrid neMD-MC propagation, we define a
“conformational evolution speed” given by the net root-mean-
square deviation (RMSD) of the peptide at a time t relative to
the peptide configuration at time t � ∆T. Monitoring the con-
formational evolution speed, while including the total cost to
generate the non-equilibrium switches, allows us to assess the
net efficiency of the hybrid neMD-MC propagator in terms
of the perturbation scheme and boosting schedule. As illus-
trated in Fig. 3, it is indeed possible to identify a maximum
efficiency in the case of the deca-alanine system. Based on
this metric, a switching time of about 1.8 ps yields the most
efficient hybrid neMD-MC propagator for the deca-alanine
system.

For the (AAQAA)3 system in an explicit solvent, we
monitored the fraction of secondary-structure elements in the
peptide chain as a function of switching time. As illustrated
in Fig. 4, the efficiency is fairly poor when the switching
time is too short. The simulation started with the peptide in
an α-helical conformation, which persisted for an extended

FIG. 4. Optimization test for the (AAQAA)3 system in an explicit solvent by
monitoring time cumulative average for the α-helicity. 4 independent trajec-
tories were simulated for all cases, and 4 additional independent simulations
were operated for MD and 24 ps switch. The peptide is defined to be in the
α-helical conformation when the (φ, ψ) backbone dihedral angles of three
consecutive residues fulfill the conditions |�65◦ � φ| < 35◦ and |�37◦ � ψ|
< 30◦.
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TABLE I. Acceptance probability for the (AAQAA)3 peptide.a

τ (ps) τ1 (ps) Pa

10 1 0.42
12 2 0.60
14 3 0.72
16 4 0.79
24 8 0.92

aτ is the total switching time, τ1 is the ramping time, and the boosting phase lasts
τ � 2τ1; 4 neMD-MC simulations were carried out for a switching time of 10, 12, 14,
and 16 ps, and 8 neMD-MC simulations were carried out for a switching time of 24 ps.

period of time. In contrast, the efficiency is considerably
improved by employing a switching time of 24 ps. While
it is possible that this could lead to further improvement,
the behavior of the system was not examined for switching
times longer than 24 ps. In practice, the efficiency of the
(AAQAA)3 system in an explicit solvent is already very good
with 24 ps according to Fig. 4. As shown in Table I, the accep-
tance probability Pa is about 0.92 with a switching time of
24 ps. This is approaching the limit afforded by the shadow
work, which would be present with normal equilibrium MD
propagation.

C. Performance

Deca-alanine is an extremely well-characterized bench-
mark system for testing the ability of new sampling schemes
to capture subtle conformational equilibria.28,35 Its global
free-energy minimum corresponds to a fully α-helical con-
formation resulting from the formation of robust i → i + 4
intra-molecular hydrogen bonds. When generating a PMF
along its end-to-end distance, the metastable states that exist
along the orthogonal degrees of freedom in the “rugged” region
between 4 and 12 Å can dramatically slow the convergence of
conformational sampling. Furthermore, there is a very large
free energy difference of about 30 kcal/mol between the com-
pletely folded form (14 Å) and the family of unfolded struc-
tures (32 Å). As a result, biased simulations must be used to
overcome the considerable imbalance in the equilibrium prob-
ability along the end-to-end distance. Here, we use the adaptive
biasing force (ABF) method.32,33 It should be emphasized
that the necessity to adopt some form of importance sampling
method to explore the end-to-end distance of the deca-alanine
system remains true, whether a hybrid neMD-MC propagator
is used or not.

The main results are displayed in Fig. 5. Comparison of
the various methods reveals that the hybrid propagator with
ABF clearly converged faster toward the reference PMF. While
the standard deviations of the PMF based on eight indepen-
dent simulations, either MD or the hybrid, are comparable
in regions of the reaction pathway that are easily sampled
(>12 Å), those for the hybrid method are certainly lower in
the rugged region (<12 Å). This is indicative that the hybrid
method facilitates the sampling of the numerous metastable
states lying along orthogonal degrees of freedom in this region.
Interestingly, when simulating multiple independent trajec-
tories with pure ABF, we observed that some trajectories
occasionally remained “trapped” in metastable regions for an

FIG. 5. PMF of the end-to-end distance of tests on deca-alanine in vacuum
computed using ABF and ABF with hybrid-(REST2, aMD). Results using α-
helix (top) and C5-extended (bottom) conformation as the starting structure
are shown. 8 independent trajectories of 40 ns were simulated using ABF and
ABF-hybrid.

extended fraction of the simulation time. This occurred for
ABF with both starting conformations, leading to an over-
stabilization of the metastable states and resulting in slow
convergence. If one consider these trapped simulations as
outliers and discard them, then ABF-MD performs overall
better than ABF-hybrid. Importantly, this highly undesirable
trapping phenomenon was not observed for the ABF-hybrid
simulations. In assessing the overall efficiency of the ABF-
hybrid simulations, it is important to note that no data are
collected about the gradient during the neMD switching trajec-
tories. Thus, the total amount of data accumulated to estimate
the mean gradient is necessarily smaller than with ABF-MD.
The hybrid scheme with ABF having only 70% of equiva-
lent MD data points, yet performing better, underscores its
power.

As a final illustrative test, we consider the fold-
ing/unfolding of the 15 residue peptide (AAQAA)3 in an
explicit solvent. This system has been the object of exten-
sive simulation studies and is very well characterized.25,34 To
highlight the conformational sampling challenge, the simu-
lations were all started in the long-lived α-helix metastable
state. Let us first compare the results from simple brute-
force equilibrium MD and a hybrid neMD-MC propagator
with REST2 boosting. Figure 6 shows the efficiency of the
hybrid-REST2 propagator through time-cumulative averages
of secondary structures (α-helix and β-strand). It is observed
that the simulation converges towards the reference equilib-
rium average much faster with the hybrid propagator. This
trend is systematic, as indicated by the 99% confidence interval
estimated from the 8 independent trajectories. Rapid confor-
mational fluctuations of the (AAQAA)3 peptide are visibly
occurring with the hybrid-REST2 propagator, as shown by
the time-series of the individual simulations (Figs. S1–S4 of
the supplementary material). Conversely, the systems simu-
lated via simple brute-force equilibrium MD remain essen-
tially trapped in the starting α-helical conformation. While
the brute-force equilibrium MD generated 13 times more data
points than the hybrid propagator, the conformational space of
the (AAQAA)3 peptide was explored much more efficiently
with the hybrid propagator. Remarkably, REST2 (10 replicas)
and TREMD (32 replicas) result in a weaker performance than

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-002748
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FIG. 6. Cumulative time-average for the secondary structure elements of
a (AAQAA)3 peptide in an explicit solvent using unbiased MD (single-
copy), hybrid-REST2 neMD-MC (single-copy), REST2 with 10 replicas, and
TREMD with 32 replicas. 8 independent trajectories of 60 ns were simulated
using unbiased MD and the hybrid neMD-MC propagator, 6 ns each of 10
replicas were simulated using REST2, and 1.875 ns each of 32 replicas were
simulated using TREMD. The total number of MD steps on the x-axis repre-
sents the actual computational costs of each approach as the number of steps
per replica times the number of replica. The peptide is defined to be in the
α-helical conformation when the (φ, ψ) backbone dihedral angles of three
consecutive residues fulfill the conditions |�65◦ � φ| < 35◦ and |�37◦ � ψ|
< 30◦. The peptide is in the β-strand conformation when (φ, ψ) fulfill the
conditions |�140◦ � φ| < 40◦ and |150◦ � ψ| < 30◦.

the single-copy hybrid-REST2 neMD-MC propagator. The
conformational sampling of (AAQAA)3 in solution remains
inefficient with these multiple-copy approaches, despite the
fact that there were frequent exchanges between the replicas
(Figs. S5 and S6 of the supplementary material). The differ-
ence in performance is particularly glaring when comparing in
terms of total computational cost of all approaches (Fig. 6). It is
of interest to compare these results with the ABF calculations
for the deca-alanine toy model discussed above. In the case of
the ABF-hybrid simulations, nearly 70% of the data produced
correspond to equilibrium sampling and were accumulated to
estimate the mean gradient. Increasing the amount of non-
equilibrium switches is not advantageous because it reduces
the amount of data used to estimate the mean gradient needed in
ABF. This points to the limitation associated with the inherent
loss of data during the non-equilibrium switches in the con-
text of ABF. When the data collected from simple brute-force
equilibrium MD are sufficiently uncorrelated, as in the case of
deca-alanine, then increasing the proportion of the sampling
carried out via the hybrid propagator becomes statistically less
efficient. Even if the hybrid propagator actually moves the sys-
tem around conformational space rapidly, enough data points
must still be accumulated to accurately determine the average
gradient that is needed for the ABF method. This stands in
contrast with the (AAQAA)3 simulation, for which the frac-
tion of helicity could be determined accurately even though
only 7.7% of the data produced corresponds to equilibrium
sampling. The hybrid propagator can efficiently explore the
conformational space accessible to the peptide in solution and
the result without relying on accumulated equilibrium data as
in the case of ABF. Even though the brute-force equilibrium
MD simulations include about 13 times more data points than
the hybrid simulation, it is extremely inefficient to explore the
conformational space accessible to the (AAQAA)3 peptide in
solution.

IV. CONCLUSION

Powerful hybrid neMD-MC algorithms can be designed
to boost and accelerate the conformational sampling of com-
plex molecular systems. At the heart of the hybrid neMD-MC
algorithms is a transient non-equilibrium perturbation of the
system, which is aimed at overcoming the barriers in the
rugged energy landscapes. Importantly, the neMD-MC algo-
rithms robustly generate the correct Boltzmann equilibrium
distribution. A vast range of time-dependent perturbations are
possible to construct a family of hybrid neMD-MC propa-
gators adapted to different situations. In the present test, we
boosted the conformational sampling by relying on Hamilto-
nian perturbations based on aMD and REST2, but the strategy
allows virtually any accelerated methods to be introduced dur-
ing the neMD steps to efficiently lower the free-energy barriers.
The benchmark systems tested demonstrate the correctness
and effectiveness of the hybrid propagator, emphasizing its
faster convergence compared to equilibrium MD. Although the
switching schedule was optimized heuristically in the present
study, it is possible to infer it analytically when the Hamil-
tonian is perturbed linearly.26 Depending on the problem at
hand, hybrid neMD-MC propagators may advantageously be
combined with a number of established strategies and free
energy methods,17 including umbrella sampling (US),36 adap-
tive biasing force (ABF),28 Hamiltonian tempering replica-
exchange,37 and alchemical free energy perturbation.12 Future
work will explore how the present hybrid neMD-MC propa-
gators behave in the case of very complex biological objects
and can be possibly tailored to address the rugged free-energy
landscape underlying intricate processes therein.

SUPPLEMENTARY MATERIAL

See supplementary material for details (time-series, time-
cumulative average, and accepted exchanges) about the simu-
lations of the (AAQAA)3 peptide in an explicit solvent (MD,
hybrid neMD-MC, REST2, and TREMD).
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APPENDIX: TCL PSEUDOCODE FOR NEMD-MC
PROPAGATOR

Schematic Tcl pseudocode for executing the hybrid
neMD-MC propagator with the NAMD30 program:

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-002748
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-002748
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proc save_callback {labels values} {
global saved_labels saved_values
set saved_labels $labels
set saved_values $values

}proc save_array {} {
global saved_labels saved_values saved_array
foreach label $saved_labels value $saved_values {
set saved_array($label) $value

}
}
set eqMD 1000
#eqMD steps per cycle
set Relax 100
#lowest propagation without perturbation
set Ramping 7900
#total steps during ramping except for relaxation
set Highest_boost 4000
#total steps at the highest boost
set num_runs 2308
#number of cycles
set num_switches 790
#number of switches per each direction (up, down)
set final 0.7
#highest boost for REST2
set diff [expr (1.0-$final)/$num_switches]
#perturbed amount per switch
set i 0
while {$i < $num_runs} {
run [expr $eqMD / 2]
save_array
set TOT_E_A $saved_array(TOTAL)
checkpoint
if { rand() > 0.5 } {
set flipped_vel 1
rescalevels -1.0

} else {
set flipped_vel 0

}
Langevin off
set step_up 1
set current 1.0
run [expr $Relax / 2]
set current [expr $current - $diff]
while {$step_up<=$num_switch} {
sptScaleFactor $current
run [expr int($Ramping/($num_switch*2))]
set current [expr $current - $diff]
incr step_up

}
run $Highest_boost
set step_down [expr $num_switch - 1]
while {$step_down>=0} {
set current [expr $current + $diff]
sptScaleFactor $current
run [expr int($Ramping/($num_switches*2))]
incr step_down -1

}
set current [expr $current + $diff]
sptScaleFactor $current
run [expr $Relax / 2]
save_array
set TOT_E_B $saved_array(TOTAL)
if { $flipped_vel } {
rescalevels -1.0

}
set BOLTZMAN 0.001987191
set beta [expr 1. / ($temp * $BOLTZMAN)]
set delta [expr $beta * ($TOT_E_B - $TOT_E_A)]
set MC [expr exp(-1. * $delta) > rand()]
if { $MC } {
puts "EXCHANGE_ACCEPT RUN $i"
incr exchange_accepted

} else {
puts "EXCHANGE_REJECT RUN $i"
revert

}
incr exchange_attempted
Langevin on

run [expr $steps_for_MD / 2]
incr i

}
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