DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Covalently Grafted Polysulfur–Graphene Nanocomposites for Ultrahigh Sulfur-Loading Lithium–Polysulfur Batteries

Abstract

Although lithium–polysulfur (Li–polyS) batteries employing organic polymeric sulfur as a cathode material outperform the lithium–sulfur (Li–S) battery system, the relatively low sulfur loading (<2 mg cm–2) in the current Li–polyS batteries compromises the areal capacity, constraining their practicality. We present here a new cathode active material (a covalently grafted polysulfur–graphene nanocomposite (polySGN)) for ultrahigh-loading Li–polyS batteries. The new cathode active material polySGN offers several advantages: (i) the well-dispersed graphene sheets offer highly electrically conductive pathways for electrons to travel within the polySGN matrix; (ii) the intermediate organosulfide moieties alleviate irreversible sulfide deposition on electrodes; and (iii) the in situ formed coating layer on the cathode-side surface of the polymeric separator further reduces polysulfide migration. In conclusion, the Li–polyS batteries employing polySGN as the cathode active material accomplish the highest sulfur loading (up to 10.5 mg cm–2) and the highest areal capacity (~12 mA h cm–2) reported thus far in the literature.

Authors:
 [1]; ORCiD logo [1]
  1. The Univ. of Texas at Austin, Austin, TX (United States)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1487468
Grant/Contract Number:  
EE0007218
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 3; Journal Issue: 1; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Chang, Chi -Hao, and Manthiram, Arumugam. Covalently Grafted Polysulfur–Graphene Nanocomposites for Ultrahigh Sulfur-Loading Lithium–Polysulfur Batteries. United States: N. p., 2017. Web. doi:10.1021/acsenergylett.7b01031.
Chang, Chi -Hao, & Manthiram, Arumugam. Covalently Grafted Polysulfur–Graphene Nanocomposites for Ultrahigh Sulfur-Loading Lithium–Polysulfur Batteries. United States. https://doi.org/10.1021/acsenergylett.7b01031
Chang, Chi -Hao, and Manthiram, Arumugam. Wed . "Covalently Grafted Polysulfur–Graphene Nanocomposites for Ultrahigh Sulfur-Loading Lithium–Polysulfur Batteries". United States. https://doi.org/10.1021/acsenergylett.7b01031. https://www.osti.gov/servlets/purl/1487468.
@article{osti_1487468,
title = {Covalently Grafted Polysulfur–Graphene Nanocomposites for Ultrahigh Sulfur-Loading Lithium–Polysulfur Batteries},
author = {Chang, Chi -Hao and Manthiram, Arumugam},
abstractNote = {Although lithium–polysulfur (Li–polyS) batteries employing organic polymeric sulfur as a cathode material outperform the lithium–sulfur (Li–S) battery system, the relatively low sulfur loading (<2 mg cm–2) in the current Li–polyS batteries compromises the areal capacity, constraining their practicality. We present here a new cathode active material (a covalently grafted polysulfur–graphene nanocomposite (polySGN)) for ultrahigh-loading Li–polyS batteries. The new cathode active material polySGN offers several advantages: (i) the well-dispersed graphene sheets offer highly electrically conductive pathways for electrons to travel within the polySGN matrix; (ii) the intermediate organosulfide moieties alleviate irreversible sulfide deposition on electrodes; and (iii) the in situ formed coating layer on the cathode-side surface of the polymeric separator further reduces polysulfide migration. In conclusion, the Li–polyS batteries employing polySGN as the cathode active material accomplish the highest sulfur loading (up to 10.5 mg cm–2) and the highest areal capacity (~12 mA h cm–2) reported thus far in the literature.},
doi = {10.1021/acsenergylett.7b01031},
journal = {ACS Energy Letters},
number = 1,
volume = 3,
place = {United States},
year = {Wed Nov 29 00:00:00 EST 2017},
month = {Wed Nov 29 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The use of elemental sulfur as an alternative feedstock for polymeric materials
journal, April 2013

  • Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1624

Sulfur and Its Role In Modern Materials Science
journal, November 2016


Under sulfur's spell
journal, July 2011


Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense
journal, July 2016


The use of polymers in Li-S batteries: A review
journal, March 2017

  • Dirlam, Philip T.; Glass, Richard S.; Char, Kookheon
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 55, Issue 10
  • DOI: 10.1002/pola.28551

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials
journal, January 2015

  • Lim, Jeewoo; Pyun, Jeffrey; Char, Kookheon
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201409468

Sulfur-sulfur bond lengths, or can a bond length be estimated from a single parameter?
journal, October 1988

  • Knop, Osvald.; Boyd, Russell J.; Choi, S. C.
  • Journal of the American Chemical Society, Vol. 110, Issue 22
  • DOI: 10.1021/ja00230a005

Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li–S Batteries
journal, February 2014

  • Simmonds, Adam G.; Griebel, Jared J.; Park, Jungjin
  • ACS Macro Letters, Vol. 3, Issue 3
  • DOI: 10.1021/mz400649w

Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries
journal, January 2016

  • Talapaneni, Siddulu Naidu; Hwang, Tae Hoon; Je, Sang Hyun
  • Angewandte Chemie International Edition, Vol. 55, Issue 9
  • DOI: 10.1002/anie.201511553

Immobilization of sulfur in microgels for lithium–sulfur battery
journal, January 2016

  • Chang, Aiping; Wu, Qingshi; Du, Xue
  • Chemical Communications, Vol. 52, Issue 24
  • DOI: 10.1039/C6CC00489J

Copolymerization of Polythiophene and Sulfur To Improve the Electrochemical Performance in Lithium–Sulfur Batteries
journal, October 2015


Cardanol benzoxazine-Sulfur Copolymers for Li-S batteries: Symbiosis of Sustainability and Performance
journal, March 2016

  • Shukla, Swapnil; Ghosh, Arnab; Sen, Uttam Kumar
  • ChemistrySelect, Vol. 1, Issue 3
  • DOI: 10.1002/slct.201600050

A new configured lithiated silicon–sulfur battery built on 3D graphene with superior electrochemical performances
journal, January 2016

  • Li, Bin; Li, Songmei; Xu, Jingjing
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C6EE01019A

Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li‐S batteries
journal, September 2016

  • Zhang, Yueyan; Griebel, Jared J.; Dirlam, Philip T.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 55, Issue 1
  • DOI: 10.1002/pola.28266

Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries
journal, January 2015

  • Wei, Yangyang; Li, Xiang; Xu, Zhen
  • Polymer Chemistry, Vol. 6, Issue 6
  • DOI: 10.1039/C4PY01055H

Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries
journal, January 2015

  • Dirlam, Philip T.; Simmonds, Adam G.; Kleine, Tristan S.
  • RSC Advances, Vol. 5, Issue 31
  • DOI: 10.1039/C5RA01188D

A Sulfur-Rich Copolymer@CNT Hybrid Cathode with Dual-Confinement of Polysulfides for High-Performance Lithium-Sulfur Batteries
journal, December 2016


Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries
journal, June 2015

  • Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8278

A new approach for recycling waste rubber products in Li–S batteries
journal, January 2017

  • Yu, Byeong-Chul; Jung, Ji-Won; Park, Kyusung
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02770A

Graphene-based composite materials
journal, July 2006

  • Stankovich, Sasha; Dikin, Dmitriy A.; Dommett, Geoffrey H. B.
  • Nature, Vol. 442, Issue 7100, p. 282-286
  • DOI: 10.1038/nature04969

Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications
journal, September 2012

  • Georgakilas, Vasilios; Otyepka, Michal; Bourlinos, Athanasios B.
  • Chemical Reviews, Vol. 112, Issue 11
  • DOI: 10.1021/cr3000412

The chemistry of graphene oxide
journal, January 2010

  • Dreyer, Daniel R.; Park, Sungjin; Bielawski, Christopher W.
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B917103G

High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties
journal, January 2014

  • Yu, Yuan-Hsiang; Lin, Yan-Yu; Lin, Chia-Hsuan
  • Polym. Chem., Vol. 5, Issue 2
  • DOI: 10.1039/C3PY00825H

Oligoanilines as a suppressor of polysulfide shuttling in lithium–sulfur batteries
journal, January 2017

  • Chang, Chi-Hao; Chung, Sheng-Heng; Han, Pauline
  • Materials Horizons, Vol. 4, Issue 5
  • DOI: 10.1039/C7MH00510E

Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries
journal, June 2014

  • Chung, Sheng-Heng; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 24, Issue 33
  • DOI: 10.1002/adfm.201400845

Works referencing / citing this record:

Facile preparation of ultrafine Ti 4 O 7 nanoparticle-embedded porous carbon for high areal capacity lithium–sulfur batteries
journal, January 2018

  • Chen, Ao; Liu, Weifang; Hu, Hang
  • Journal of Materials Chemistry A, Vol. 6, Issue 41
  • DOI: 10.1039/c8ta07511e

Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application
journal, June 2018


Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable
journal, May 2018

  • Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 28, Issue 28
  • DOI: 10.1002/adfm.201801188

Elucidating the reaction kinetics of lithium–sulfur batteries by operando XRD based on an open-hollow S@MnO 2 cathode
journal, January 2019

  • Huang, Shaozhuan; Liu, Lixiang; Wang, Ye
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c9ta00199a

A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries
journal, January 2019

  • Li, Yun; Murphy, Ian A.; Chen, Ying
  • Journal of Materials Chemistry A, Vol. 7, Issue 21
  • DOI: 10.1039/c9ta02743b

2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries
journal, January 2019

  • Zhao, Qian; Zhu, Qizhen; Miao, Jiawei
  • Nanoscale, Vol. 11, Issue 17
  • DOI: 10.1039/c8nr09653h

Synthesis and Applications of Polymers Made by Inverse Vulcanization
journal, May 2019

  • Chalker, Justin M.; Worthington, Max J. H.; Lundquist, Nicholas A.
  • Topics in Current Chemistry, Vol. 377, Issue 3
  • DOI: 10.1007/s41061-019-0242-7

Current Status and Future Prospects of Metal–Sulfur Batteries
journal, May 2019