DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor

Abstract

Ethylene oxidation initiated by ozone addition (ozonolysis) is carried out in a jet-stirred reactor from 300-1000 K to explore the kinetic pathways relevant to low-temperature oxidation. The temperature dependencies of species’ mole fractions are quantified using molecular-beam mass spectrometry with electron ionization and single-photon ionization employing tunable synchrotron-generated vacuum-ultraviolet radiation. Upon ozone addition, significant ethylene oxidation is found in the low-temperature regime from 300-600 K. Here, we provide new insights into the ethylene ozonolysis reaction network via identification and quantification of previously elusive intermediates by combining experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Specifically, the C2H4+O3 adduct C2H4O3 is identified as a keto-hydroperoxide (hydroperoxy-acetaldehyde, HOOCH2CHO) based on the calculated and experimentally observed ionization energy of 9.80 (±0.05) eV. Quantification using a photoionization cross-section of 5 Mb at 10.5 eV results in 5 ppm at atmospheric conditions which decreases monotonically with temperature until 550 K. Other hydroperoxide species, that contribute in larger amounts to the low-temperature oxidation of C2H4, like H2O2, CH3OOH, and C2H5OOH, are identified and their temperature-dependent mole fractions are reported. The experimental evidence for additional oxygenated species such as methanol, ketene, acetaldehyde, and hydroxy-acetaldehyde suggest multiple active oxidation routes. This experimental investigationmore » closes the gap between ozonolysis at atmospheric and elevated temperature conditions and provides a database for future modeling.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [1]
  1. Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Research Facility
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS)
OSTI Identifier:
1487124
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 122; Journal Issue: 43; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; ethylene; jet-stirred reactor; keto-hydroperoxide; low-temperature chemistry; ozone

Citation Formats

Rousso, Aric C., Hansen, Nils, Jasper, Ahren W., and Ju, Yiguang. Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor. United States: N. p., 2018. Web. doi:10.1021/acs.jpca.8b06556.
Rousso, Aric C., Hansen, Nils, Jasper, Ahren W., & Ju, Yiguang. Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor. United States. https://doi.org/10.1021/acs.jpca.8b06556
Rousso, Aric C., Hansen, Nils, Jasper, Ahren W., and Ju, Yiguang. Sun . "Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor". United States. https://doi.org/10.1021/acs.jpca.8b06556. https://www.osti.gov/servlets/purl/1487124.
@article{osti_1487124,
title = {Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor},
author = {Rousso, Aric C. and Hansen, Nils and Jasper, Ahren W. and Ju, Yiguang},
abstractNote = {Ethylene oxidation initiated by ozone addition (ozonolysis) is carried out in a jet-stirred reactor from 300-1000 K to explore the kinetic pathways relevant to low-temperature oxidation. The temperature dependencies of species’ mole fractions are quantified using molecular-beam mass spectrometry with electron ionization and single-photon ionization employing tunable synchrotron-generated vacuum-ultraviolet radiation. Upon ozone addition, significant ethylene oxidation is found in the low-temperature regime from 300-600 K. Here, we provide new insights into the ethylene ozonolysis reaction network via identification and quantification of previously elusive intermediates by combining experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Specifically, the C2H4+O3 adduct C2H4O3 is identified as a keto-hydroperoxide (hydroperoxy-acetaldehyde, HOOCH2CHO) based on the calculated and experimentally observed ionization energy of 9.80 (±0.05) eV. Quantification using a photoionization cross-section of 5 Mb at 10.5 eV results in 5 ppm at atmospheric conditions which decreases monotonically with temperature until 550 K. Other hydroperoxide species, that contribute in larger amounts to the low-temperature oxidation of C2H4, like H2O2, CH3OOH, and C2H5OOH, are identified and their temperature-dependent mole fractions are reported. The experimental evidence for additional oxygenated species such as methanol, ketene, acetaldehyde, and hydroxy-acetaldehyde suggest multiple active oxidation routes. This experimental investigation closes the gap between ozonolysis at atmospheric and elevated temperature conditions and provides a database for future modeling.},
doi = {10.1021/acs.jpca.8b06556},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 43,
volume = 122,
place = {United States},
year = {Sun Oct 07 00:00:00 EDT 2018},
month = {Sun Oct 07 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Ethylene ozonolysis reaction pathway with major intermediate species.

Save / Share:

Works referenced in this record:

C.—The oxidation of hydrocarbons by ozone at low temperatures
journal, January 1906


Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: Overview of the PUMA Consortium project
journal, May 2006


Energetics, Kinetics, and Product Distributions of the Reactions of Ozone with Ethene and 2,3-Dimethyl-2-butene
journal, December 1997

  • Olzmann, M.; Kraka, E.; Cremer, D.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 49
  • DOI: 10.1021/jp971663e

The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene
journal, October 2014

  • Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko
  • Journal of the American Chemical Society, Vol. 136, Issue 44
  • DOI: 10.1021/ja507146s

Observation of the simplest Criegee intermediate CH 2 OO in the gas-phase ozonolysis of ethylene
journal, March 2015

  • Womack, Caroline C.; Martin-Drumel, Marie-Aline; Brown, Gordon G.
  • Science Advances, Vol. 1, Issue 2
  • DOI: 10.1126/sciadv.1400105

Oligomerization Reaction of the Criegee Intermediate Leads to Secondary Organic Aerosol Formation in Ethylene Ozonolysis
journal, November 2013

  • Sakamoto, Yosuke; Inomata, Satoshi; Hirokawa, Jun
  • The Journal of Physical Chemistry A, Vol. 117, Issue 48
  • DOI: 10.1021/jp408672m

Water vapour effects on secondary organic aerosol formation in isoprene ozonolysis
journal, January 2017

  • Sakamoto, Yosuke; Yajima, Ryoji; Inomata, Satoshi
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 4
  • DOI: 10.1039/C6CP04521A

The physical chemistry of Criegee intermediates in the gas phase
journal, July 2015


Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides
journal, May 2017


Die Ozonisierung des 9,10-Oktalins
journal, July 1949


Quantum Chemical Study of the Initial Step of Ozone Addition to the Double Bond of Ethylene
journal, October 2012

  • Gadzhiev, Oleg B.; Ignatov, Stanislav K.; Krisyuk, Boris E.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 42
  • DOI: 10.1021/jp307738p

Kinetics of CH 2 OO reactions with SO 2 , NO 2 , NO, H 2 O and CH 3 CHO as a function of pressure
journal, January 2014

  • Stone, Daniel; Blitz, Mark; Daubney, Laura
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 3
  • DOI: 10.1039/C3CP54391A

The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides
journal, January 2014

  • Vereecken, L.; Harder, H.; Novelli, A.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 9
  • DOI: 10.1039/c3cp54514h

Nascent energy distribution of the Criegee intermediate CH 2 OO from direct dynamics calculations of primary ozonide dissociation
journal, May 2018

  • Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W.
  • The Journal of Chemical Physics, Vol. 148, Issue 17
  • DOI: 10.1063/1.5028117

Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis
journal, May 2015

  • Nguyen, Thanh Lam; Lee, Hyunwoo; Matthews, Devin A.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 22
  • DOI: 10.1021/acs.jpca.5b02088

Identification of dioxirane (H2COO) in ozone-olefin reactions via microwave spectroscopy
journal, November 1977


Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour
journal, May 1997


First-principles-derived kinetics of the reactions involved in low-temperature dimethyl ether oxidation
journal, February 2008


Plasma assisted combustion: Dynamics and chemistry
journal, June 2015


The effect of ozone addition on laminar flame speed
journal, October 2015


Spark ignition of methane and methanol in ozonized air
journal, January 1989


Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3
journal, October 2010


Quantification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether
journal, September 2016

  • Moshammer, Kai; Jasper, Ahren W.; Popolan-Vaida, Denisia M.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 40
  • DOI: 10.1021/acs.jpca.6b06634

Detection and Identification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether
journal, February 2015

  • Moshammer, Kai; Jasper, Ahren W.; Popolan-Vaida, Denisia M.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/acs.jpca.5b00101

New insights into the low-temperature oxidation of 2-methylhexane
journal, January 2017

  • Wang, Zhandong; Mohamed, Samah Y.; Zhang, Lidong
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.06.085

Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015
journal, September 2016

  • Orphal, Johannes; Staehelin, Johannes; Tamminen, Johanna
  • Journal of Molecular Spectroscopy, Vol. 327
  • DOI: 10.1016/j.jms.2016.07.007

Kinetic modeling of ethylene oxidation
journal, March 1988


Chemical dynamics, molecular energetics, and kinetics at the synchrotron
journal, January 2010

  • Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 25
  • DOI: 10.1039/c001707h

Advances and challenges in laminar flame experiments and implications for combustion chemistry
journal, August 2014


Detailed mass spectrometric and modeling study of isomeric butene flames
journal, March 2013


Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion
journal, February 2008

  • Wang, Juan; Yang, Bin; Cool, Terrill A.
  • International Journal of Mass Spectrometry, Vol. 269, Issue 3
  • DOI: 10.1016/j.ijms.2007.10.013

Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame
journal, May 2015


Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source
journal, September 2005

  • Cool, Terrill A.; McIlroy, Andrew; Qi, Fei
  • Review of Scientific Instruments, Vol. 76, Issue 9
  • DOI: 10.1063/1.2010307

Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry
journal, October 2003

  • Cool, Terrill A.; Nakajima, Koichi; Mostefaoui, Toufik A.
  • The Journal of Chemical Physics, Vol. 119, Issue 16
  • DOI: 10.1063/1.1611173

Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry
journal, April 2009

  • Hansen, Nils; Cool, Terrill A.; Westmoreland, Phillip R.
  • Progress in Energy and Combustion Science, Vol. 35, Issue 2
  • DOI: 10.1016/j.pecs.2008.10.001

“Imaging” combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry
journal, January 2008

  • Taatjes, Craig A.; Hansen, Nils; Osborn, David L.
  • Phys. Chem. Chem. Phys., Vol. 10, Issue 1
  • DOI: 10.1039/B713460F

Studies of a fuel-rich propane flame with photoionization mass spectrometry
journal, January 2005

  • Cool, Terrill A.; Nakajima, Koichi; Taatjes, Craig A.
  • Proceedings of the Combustion Institute, Vol. 30, Issue 1
  • DOI: 10.1016/j.proci.2004.08.103

Ethylene pyrolysis and oxidation: A kinetic modeling study
journal, June 1990

  • Dagaut, Philippe; Boettner, Jean-Claude; Cathonnet, Michel
  • International Journal of Chemical Kinetics, Vol. 22, Issue 6
  • DOI: 10.1002/kin.550220608

Ethylene oxidation in a well-stirred reactor
journal, October 1995

  • Marinov, Nick M.; Malte, Philip C.
  • International Journal of Chemical Kinetics, Vol. 27, Issue 10
  • DOI: 10.1002/kin.550271003

The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene
journal, January 2017

  • Li, Yang; Zhou, Chong-Wen; Somers, Kieran P.
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.05.052

A Hierarchical and Comparative Kinetic Modeling Study of C 1 − C 2 Hydrocarbon and Oxygenated Fuels : KINETIC STUDY OF C
journal, August 2013

  • Metcalfe, Wayne K.; Burke, Sinéad M.; Ahmed, Syed S.
  • International Journal of Chemical Kinetics, Vol. 45, Issue 10
  • DOI: 10.1002/kin.20802

An Experimental and Kinetic Study of Ethene Oxidation at a High Equivalence Ratio
journal, October 2002

  • Jallais, S.; Bonneau, L.; Auzanneau, M.
  • Industrial & Engineering Chemistry Research, Vol. 41, Issue 23
  • DOI: 10.1021/ie010568w

Experimental Confirmation of the Low-Temperature Oxidation Scheme of Alkanes
journal, April 2010

  • Battin-Leclerc, Frédérique; Herbinet, Olivier; Glaude, Pierre-Alexandre
  • Angewandte Chemie International Edition, Vol. 49, Issue 18
  • DOI: 10.1002/anie.200906850

The nature of the transitory product in the gas-phase ozonolysis of ethene
journal, November 1995


Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame
journal, April 2009

  • Lin, Z. K.; Han, D. L.; Li, S. F.
  • The Journal of Chemical Physics, Vol. 130, Issue 15
  • DOI: 10.1063/1.3109687

Direct Kinetic Measurements of Reactions between the Simplest Criegee Intermediate CH 2 OO and Alkenes
journal, March 2014

  • Buras, Zachary J.; Elsamra, Rehab M. I.; Jalan, Amrit
  • The Journal of Physical Chemistry A, Vol. 118, Issue 11
  • DOI: 10.1021/jp4118985

Plasma supported combustion
journal, January 2005


Effect of ozone on combustion of compression ignition engines
journal, June 1991


Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone
journal, January 2012

  • Taatjes, Craig A.; Welz, Oliver; Eskola, Arkke J.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 30
  • DOI: 10.1039/c2cp40294g

Formation of formic acid and organic peroxides in the ozonolysis of ethene with added water vapour
journal, July 1994

  • Horie, Osamu; Neeb, Peter; Limbach, Stefan
  • Geophysical Research Letters, Vol. 21, Issue 14
  • DOI: 10.1029/94GL01174

VUV Photoionization Cross Sections of HO 2 , H 2 O 2 , and H 2 CO
journal, February 2015

  • Dodson, Leah G.; Shen, Linhan; Savee, John D.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 8
  • DOI: 10.1021/jp508942a

Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry
journal, January 2011

  • Gans, Bérenger; Boyé-Péronne, Séverine; Broquier, Michel
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 18
  • DOI: 10.1039/c0cp02627a

Calculation of low‐energy elastic cross sections for electron‐CF 4 scattering
journal, May 1994

  • Gianturco, F. A.; Lucchese, R. R.; Sanna, N.
  • The Journal of Chemical Physics, Vol. 100, Issue 9
  • DOI: 10.1063/1.467237

A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes
journal, October 2015

  • Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 50
  • DOI: 10.1021/acs.jpca.5b06949

High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne
journal, July 2015

  • Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.
  • The Journal of Chemical Physics, Vol. 143, Issue 3
  • DOI: 10.1063/1.4926541

Cross section and asymmetry parameter calculation for sulfur 1s photoionization of SF6
journal, September 1999

  • Natalense, Alexandra P. P.; Lucchese, Robert R.
  • The Journal of Chemical Physics, Vol. 111, Issue 12
  • DOI: 10.1063/1.479794

Developing detailed chemical kinetic mechanisms for fuel combustion
journal, January 2019


Photoionization cross sections for reaction intermediates in hydrocarbon combustion
journal, December 2005

  • Cool, Terrill A.; Wang, Juan; Nakajima, Koichi
  • International Journal of Mass Spectrometry, Vol. 247, Issue 1-3
  • DOI: 10.1016/j.ijms.2005.08.018

Absolute photoionization cross-sections of some combustion intermediates
journal, January 2012