DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective Brookite Polymorph Formation Related to the Amorphous Precursor State in TiO2 Thin Films

Abstract

A wide variety of brookite TiO2 synthesis methods have been published over the past several decades, but few studies discuss the underlying mechanism that stabilizes brookite over its stable counterparts, rutile and anatase. Here in this study, we investigate of the effect of pulsed laser deposition parameters on the as-deposited amorphous precursor titania thin films, which subsequently crystallize into stable and metastable TiO2 polymorphs upon annealing. We find that oxygen pressure in the deposition chamber strongly influences the non-equilibrium state of the amorphous precursor, which ultimately allows for selective polymorph formation. Rutile forms as the dominant phase at low pO2 < 0.1 mTorr, while anatase is favored at high pO2 > 5 mTorr. Brookite forms primarily at intermediate pO2 (0.5-1.0 mTorr). Controlling the amorphous structure (i.e. Ti - O bonding and polyhedral arrangement) of the precursors via oxygen deficiency is therefore likely for the selective formation of crystalline TiO2 polymorphs from sub-stoichiometric amorphous precursors. Lastly, directing phase selectivity by manipulating the structure and internal energy of the precursor amorphous state may have tremendous potential for synthesis of metastable crystalline phases that exhibit more desirable properties in comparison to their stable counterparts.

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [3];  [3];  [4];  [2];  [1]
  1. Colorado School of Mines, Golden, CO (United States)
  2. Oregon State Univ., Corvallis, OR (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1485571
Alternate Identifier(s):
OSTI ID: 1635947
Report Number(s):
NREL/JA-5K00-72918
Journal ID: ISSN 0022-3093
Grant/Contract Number:  
AC36-08GO28308; AC3608GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Non-Crystalline Solids
Additional Journal Information:
Journal Volume: 505; Journal Issue: C; Journal ID: ISSN 0022-3093
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; TiO2; amorphous precursors; selective crystallization; polymorphs; oxygen deficiency; thin films

Citation Formats

Mangum, John S., Agirseven, Okan, Haggerty, James E. S., Perkins, John D., Schelhas, Laura T., Kitchaev, Daniil A., Garten, Lauren M., Ginley, David S., Toney, Michael F., Tate, Janet, and Gorman, Brian P. Selective Brookite Polymorph Formation Related to the Amorphous Precursor State in TiO2 Thin Films. United States: N. p., 2018. Web. doi:10.1016/j.jnoncrysol.2018.10.049.
Mangum, John S., Agirseven, Okan, Haggerty, James E. S., Perkins, John D., Schelhas, Laura T., Kitchaev, Daniil A., Garten, Lauren M., Ginley, David S., Toney, Michael F., Tate, Janet, & Gorman, Brian P. Selective Brookite Polymorph Formation Related to the Amorphous Precursor State in TiO2 Thin Films. United States. https://doi.org/10.1016/j.jnoncrysol.2018.10.049
Mangum, John S., Agirseven, Okan, Haggerty, James E. S., Perkins, John D., Schelhas, Laura T., Kitchaev, Daniil A., Garten, Lauren M., Ginley, David S., Toney, Michael F., Tate, Janet, and Gorman, Brian P. Thu . "Selective Brookite Polymorph Formation Related to the Amorphous Precursor State in TiO2 Thin Films". United States. https://doi.org/10.1016/j.jnoncrysol.2018.10.049. https://www.osti.gov/servlets/purl/1485571.
@article{osti_1485571,
title = {Selective Brookite Polymorph Formation Related to the Amorphous Precursor State in TiO2 Thin Films},
author = {Mangum, John S. and Agirseven, Okan and Haggerty, James E. S. and Perkins, John D. and Schelhas, Laura T. and Kitchaev, Daniil A. and Garten, Lauren M. and Ginley, David S. and Toney, Michael F. and Tate, Janet and Gorman, Brian P.},
abstractNote = {A wide variety of brookite TiO2 synthesis methods have been published over the past several decades, but few studies discuss the underlying mechanism that stabilizes brookite over its stable counterparts, rutile and anatase. Here in this study, we investigate of the effect of pulsed laser deposition parameters on the as-deposited amorphous precursor titania thin films, which subsequently crystallize into stable and metastable TiO2 polymorphs upon annealing. We find that oxygen pressure in the deposition chamber strongly influences the non-equilibrium state of the amorphous precursor, which ultimately allows for selective polymorph formation. Rutile forms as the dominant phase at low pO2 < 0.1 mTorr, while anatase is favored at high pO2 > 5 mTorr. Brookite forms primarily at intermediate pO2 (0.5-1.0 mTorr). Controlling the amorphous structure (i.e. Ti - O bonding and polyhedral arrangement) of the precursors via oxygen deficiency is therefore likely for the selective formation of crystalline TiO2 polymorphs from sub-stoichiometric amorphous precursors. Lastly, directing phase selectivity by manipulating the structure and internal energy of the precursor amorphous state may have tremendous potential for synthesis of metastable crystalline phases that exhibit more desirable properties in comparison to their stable counterparts.},
doi = {10.1016/j.jnoncrysol.2018.10.049},
journal = {Journal of Non-Crystalline Solids},
number = C,
volume = 505,
place = {United States},
year = {Thu Nov 08 00:00:00 EST 2018},
month = {Thu Nov 08 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
journal, June 2017

  • Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.
  • Science Advances, Vol. 3, Issue 6
  • DOI: 10.1126/sciadv.1700270

Growth far from equilibrium: Examples from III-V semiconductors
journal, December 2016

  • Kuech, Thomas F.; Babcock, Susan E.; Mawst, Luke
  • Applied Physics Reviews, Vol. 3, Issue 4
  • DOI: 10.1063/1.4944801

Brookite, the Least Known TiO2 Photocatalyst
journal, January 2013

  • Di Paola, Agatino; Bellardita, Marianna; Palmisano, Leonardo
  • Catalysts, Vol. 3, Issue 1
  • DOI: 10.3390/catal3010036

Different Reactivities of TiO 2 Polymorphs:  Comparative DFT Calculations of Water and Formic Acid Adsorption at Anatase and Brookite TiO 2 Surfaces
journal, May 2008

  • Li, Wei-Kun; Gong, Xue-Qing; Lu, Guanzhong
  • The Journal of Physical Chemistry C, Vol. 112, Issue 17
  • DOI: 10.1021/jp802335h

On the stabilizing behavior of zirconia: A Combined experimental and theoretical study
journal, March 2004


A stabilization mechanism of zirconia based on oxygen vacancies only
journal, December 2002


Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures
journal, June 1999


High-fraction brookite films from amorphous precursors
journal, November 2017

  • Haggerty, James E. S.; Schelhas, Laura T.; Kitchaev, Daniil A.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-15364-y

Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity
journal, January 2014

  • Leichtweiss, Thomas; Henning, Ralph A.; Koettgen, Julius
  • Journal of Materials Chemistry A, Vol. 2, Issue 18
  • DOI: 10.1039/c3ta14816e

Atomic-scale structure of amorphous TiO2 by electron, X-ray diffraction and reverse Monte Carlo simulations
journal, July 1998


Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions:  Phase-Selective Synthesis and Physicochemical Properties
journal, April 2007

  • Li, Ji-Guang; Ishigaki, Takamasa; Sun, Xudong
  • The Journal of Physical Chemistry C, Vol. 111, Issue 13
  • DOI: 10.1021/jp0673258

Formation op Titanic Oxides of Anatase, Brookete and Rutile Types by Aerial Oxidation of Titanous Solutions
journal, January 1972

  • Kiyama, Masao; Akita, Toshikazu; Tsutsumi, Yuji
  • Chemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1246/cl.1972.21

Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity
journal, January 2006

  • Bakardjieva, Snejana; Stengl, Vaclav; Szatmary, Lorant
  • Journal of Materials Chemistry, Vol. 16, Issue 18
  • DOI: 10.1039/b514632a

Brookite→rutile phase transformation of TiO2 studied with monodispersed particles
journal, October 2004


Monodispersed Spherical Particles of Brookite-Type TiO2: Synthesis, Characterization, and Photocatalytic Property
journal, July 2004


Highly active semiconductor photocatalyst: Extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and / or silver sulfate solution
journal, October 1985


Nanocrystalline Brookite with Enhanced Stability and Photocatalytic Activity: Influence of Lanthanum(III) Doping
journal, January 2012

  • Perego, Céline; Wang, Yu-heng; Durupthy, Olivier
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 2
  • DOI: 10.1021/am201397n

Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route
journal, March 2013


Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite
journal, April 2012


Preparation, characterization and photocatalytic activity of optically transparent titanium dioxide particles
journal, September 2007


Toward high surface area TiO2 brookite with morphology control
journal, January 2011

  • Dambournet, Damien; Belharouak, Ilias; Ma, Jiwei
  • Journal of Materials Chemistry, Vol. 21, Issue 9
  • DOI: 10.1039/c0jm03258a

Tailored Preparation Methods of TiO 2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties
journal, February 2010

  • Dambournet, Damien; Belharouak, Ilias; Amine, Khalil
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902613h

[各種チタン化合物からのブルッカイトの水熱合成とその生成機構について]<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1979-01-01">January 1979</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Oota, Toshitaka; Yamai, Iwao; Saito, Hajime</span> </li> <li> Journal of the Ceramic Association, Japan, Vol. 87, Issue 1010</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2109/jcersj1950.87.1010_512" class="text-muted" target="_blank" rel="noopener noreferrer">10.2109/jcersj1950.87.1010_512<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1039/a908528i" target="_blank" rel="noopener noreferrer" class="name">Synthesis of brookite-type titanium oxide nano-crystals in organic media<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2000-01-01">January 2000</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kominami, Hiroshi; Kohno, Masaaki; Kera, Yoshiya</span> </li> <li> Journal of Materials Chemistry, Vol. 10, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1039/a908528i" class="text-muted" target="_blank" rel="noopener noreferrer">10.1039/a908528i<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.2465/minerj.9.236" target="_blank" rel="noopener noreferrer" class="name">Brookite formation from precipitates containing calcium ions.<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1978-01-01">January 1978</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mitsuhashi, T.; Watanabe, M.</span> </li> <li> Mineralogical Journal, Vol. 9, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2465/minerj.9.236" class="text-muted" target="_blank" rel="noopener noreferrer">10.2465/minerj.9.236<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1246/cl.1999.911" target="_blank" rel="noopener noreferrer" class="name">Hydrothermal Synthesis of Brookite<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-09-01">September 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Nagase, Takako; Ebina, Takeo; Iwasaki, Takashi</span> </li> <li> Chemistry Letters, Vol. 28, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1246/cl.1999.911" class="text-muted" target="_blank" rel="noopener noreferrer">10.1246/cl.1999.911<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1039/C6SC01611A" target="_blank" rel="noopener noreferrer" class="name">Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO <sub>2</sub> electrode for photoelectrochemical water splitting<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-01-01">January 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Li, Ailong; Wang, Zhiliang; Yin, Heng</span> </li> <li> Chemical Science, Vol. 7, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1039/C6SC01611A" class="text-muted" target="_blank" rel="noopener noreferrer">10.1039/C6SC01611A<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0968-4328(99)00005-0" target="_blank" rel="noopener noreferrer" class="name">A review of focused ion beam milling techniques for TEM specimen preparation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-06-01">June 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Giannuzzi, L. A.; Stevie, F. A.</span> </li> <li> Micron, Vol. 30, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0968-4328(99)00005-0" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0968-4328(99)00005-0<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.ultramic.2018.02.007" target="_blank" rel="noopener noreferrer" class="name">Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-05-01">May 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mangum, John S.; Chan, Lisa H.; Schmidt, Ute</span> </li> <li> Ultramicroscopy, Vol. 188</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.ultramic.2018.02.007" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.ultramic.2018.02.007<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.ultramic.2004.06.004" target="_blank" rel="noopener noreferrer" class="name">Model based quantification of EELS spectra<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-11-01">November 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Verbeeck, J.; Van Aert, S.</span> </li> <li> Ultramicroscopy, Vol. 101, Issue 2-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.ultramic.2004.06.004" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.ultramic.2004.06.004<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.nimb.2007.10.043" target="_blank" rel="noopener noreferrer" class="name">Summary of “IAEA intercomparison of IBA software”<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-04-01">April 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Barradas, N. P.; Arstila, K.; Battistig, G.</span> </li> <li> Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 266, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.nimb.2007.10.043" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.nimb.2007.10.043<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1107/S0021889813003531" target="_blank" rel="noopener noreferrer" class="name"><em>GSAS-II</em> : the genesis of a modern open-source all purpose crystallography software package<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-03-14">March 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Toby, Brian H.; Von Dreele, Robert B.</span> </li> <li> Journal of Applied Crystallography, Vol. 46, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1107/S0021889813003531" class="text-muted" target="_blank" rel="noopener noreferrer">10.1107/S0021889813003531<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.2138/am.2007.2344" target="_blank" rel="noopener noreferrer" class="name">The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-04-01">April 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Stoyanov, E.; Langenhorst, F.; Steinle-Neumann, G.</span> </li> <li> American Mineralogist, Vol. 92, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2138/am.2007.2344" class="text-muted" target="_blank" rel="noopener noreferrer">10.2138/am.2007.2344<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/1367-2630/18/11/113049" target="_blank" rel="noopener noreferrer" class="name">Phase stability of TiO <sub>2</sub> polymorphs from diffusion Quantum Monte Carlo<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-11-01">November 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Luo, Ye; Benali, Anouar; Shulenburger, Luke</span> </li> <li> New Journal of Physics, Vol. 18, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/1367-2630/18/11/113049" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/1367-2630/18/11/113049<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0968-0004(80)90256-X" target="_blank" rel="noopener noreferrer" class="name">Vanadium — an element in search of a role<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1980-04-01">April 1980</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Macara, Ian G.</span> </li> <li> Trends in Biochemical Sciences, Vol. 5, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0968-0004(80)90256-X" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0968-0004(80)90256-X<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1073/pnas.96.7.3447" target="_blank" rel="noopener noreferrer" class="name">Manganese oxide minerals: Crystal structures and economic and environmental significance<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-03-30">March 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Post, J. E.</span> </li> <li> Proceedings of the National Academy of Sciences, Vol. 96, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1073/pnas.96.7.3447" class="text-muted" target="_blank" rel="noopener noreferrer">10.1073/pnas.96.7.3447<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (36)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-citations" class="tab-content tab-content-sec osti-curated" data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Works referencing / citing this record:</p> <div class="list"> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.5140368" target="_blank" rel="noopener noreferrer" class="name">Crystallization of TiO <sub>2</sub> polymorphs from RF-sputtered, amorphous thin-film precursors<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2020-02-01">February 2020</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Agirseven, O.; Rivella, D. T.; Haggerty, J. E. S.</span> </li> <li> AIP Advances, Vol. 10, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.5140368" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.5140368<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1111/jace.16965" target="_blank" rel="noopener noreferrer" class="name">Utilizing TiO <sub>2</sub> amorphous precursors for polymorph selection: An in situ TEM study of phase formation and kinetics<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-12-04">December 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mangum, John S.; Garten, Lauren M.; Ginley, David S.</span> </li> <li> Journal of the American Ceramic Society, Vol. 103, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1111/jace.16965" class="text-muted" target="_blank" rel="noopener noreferrer">10.1111/jace.16965<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All Cited By</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (2)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted citation-search"> <label for="citation-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="citation-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="citation-search-sort-name"><label for="citation-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="citation-search-sort-date"><label for="citation-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_citations" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1598127-utilizing-tio2-amorphous-precursors-polymorph-selection-situ-tem-study-phase-formation-kinetics" itemprop="url">Utilizing TiO<sub>2</sub> amorphous precursors for polymorph selection: An in situ TEM study of phase formation and kinetics</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Mangum, John S.</span> ; <span class="author">Garten, Lauren M.</span> ; <span class="author">Ginley, David S.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of the American Ceramic Society</span> </span> </div> <div class="abstract">Selective synthesis of metastable polymorphs requires a fundamental understanding of the complex energy landscapes in which these phases form. Recently, the development of in situ high temperature and controlled atmosphere transmission electron microscopy has enabled the direct observation of nucleation, growth, and phase transformations with near atomic resolution. In this work, we directly observe the crystallization behavior of amorphous TiO<sub>2</sub> thin films grown under different pulsed laser deposition conditions and quantify the mechanisms behind metastable crystalline polymorph stabilization. Films deposited at 10 mTorr chamber oxygen pressure crystallize into nanocrystalline Anatase at 325 degrees C, whereas films deposited at 2 mTorr<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> crystallize into significantly larger needle-like grains of Brookite and Anatase at 270 degrees C. Increasing film deposition rate by a factor of 4 results in a 10x increase in the crystalline growth front velocity as well as a decrease in crystallization temperature from 270 degrees C to 225 degrees C. Engineering the amorphous precursor state through deposition conditions therefore provides routes to microstructure control and the accessibility of higher energy metastable phases.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 8<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1111/jace.16965" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1598127" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1111/jace.16965</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1598127" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1598127" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/21043918-kinetics-study-phase-transformation-from-titania-polymorph-brookite-rutile" itemprop="url">Kinetics study on phase transformation from titania polymorph brookite to rutile</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Huberty, Jason</span> ; <span class="author">Xu Huifang</span> <span class="text-muted pubdata"> - Journal of Solid State Chemistry</span> </span> </div> <div class="abstract">TiO{sub 2} is a polymorphic material of great scientific interest due to its semiconductor properties and uses in heterogeneous photocatalysis. Understanding the stability of the polymorphs is important for designing TiO{sub 2}-based photocatalysts and solar cells. Although the phase transformation of anatase{yields}rutile has been well studied, there is only one published work on brookite{yields}rutile to date. The brookite{yields}rutile transformation has been studied in this work using natural material from the Magnet Cove igneous complex mechanically processed to several micrometers in size. The pure phase brookite is annealed from 800 to 900 deg. C without detection of the anatase polymorph. The<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> transformation kinetics are described by both the standard first-order model, with an activation energy of E{sub a}=411.91 kJ/mol, and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, with an activation energy of E{sub a}=492.13 kJ/mol. The rate parameter of the first-order model for the phase transformation is expressed as k=6.85x10{sup 14} exp(-49,451/T) s{sup -1} for the first-order model and k=4.19x10{sup 18} exp(-59,189/T) s{sup -1} using the JMAK model. The obtained activation energy is higher than that of brookite nano-crystals. Our results show that the JMAK model fits the kinetics data better than other models. - Graphical abstract: The transformation kinetics from titania brookite to rutile can be described by both the standard first-order model and the JMAK model. The obtained activation energy for micron-sized brookite crystals is much higher than that for brookite nano-crystals.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1016/j.jssc.2007.12.015" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21043918" data-product-type="Journal Article" data-product-subtype="" >https://doi.org/10.1016/j.jssc.2007.12.015</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1409492-high-fraction-brookite-films-from-amorphous-precursors" itemprop="url">High-fraction brookite films from amorphous precursors</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Haggerty, James E. S.</span> ; <span class="author">Schelhas, Laura T.</span> ; <span class="author">Kitchaev, Daniil A.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Scientific Reports</span> </span> </div> <div class="abstract">Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO<sub>2</sub>, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO<sub>2</sub>, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO<sub>2</sub> growth, contributing to the further development of this promising functional material.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 40<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1038/s41598-017-15364-y" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1409492" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1038/s41598-017-15364-y</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1409492" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1409492" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="5" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1379356-computational-approach-epitaxial-polymorph-stabilization-through-substrate-selection" itemprop="url">Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Ding, Hong</span> ; <span class="author">Dwaraknath, Shyam S.</span> ; <span class="author">Garten, Lauren</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - ACS Applied Materials and Interfaces</span> </span> </div> <div class="abstract">With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO <sub>2</sub> compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO <sub>2</sub> substrates, where the VO <sub>2</sub> brookite phase would be preferentially grown on the a-c TiO <sub>2</sub> brookite plane while<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the columbite and anatase structures favor the a-b plane on the respective TiO <sub>2</sub> phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO <sub>2</sub> polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 63<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1021/acsami.6b01630" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1379356" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1021/acsami.6b01630</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1379356" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1379356" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="6" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1234078-investigating-energetic-ordering-stable-metastable-tio-polymorphs-using-dft+-hybrid-functionals" itemprop="url">Investigating the Energetic Ordering of Stable and Metastable TiO <sub>2</sub> Polymorphs Using DFT+ <i>U</i> and Hybrid Functionals</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Curnan, Matthew T.</span> ; <span class="author">Kitchin, John R.</span> <span class="text-muted pubdata"> - Journal of Physical Chemistry. C</span> </span> </div> <div class="abstract">Prediction of transition metal oxide BO<sub>2</sub> (B = Ti, V, etc.) polymorph energetic properties is critical to tunable material design and identifying thermodynamically accessible structures. Determining procedures capable of synthesizing particular polymorphs minimally requires prior knowledge of their relative energetic favorability. Information concerning TiO<sub>2</sub> polymorph relative energetic favorability has been ascertained from experimental research. In this study, the consistency of first-principles predictions and experimental results involving the relative energetic ordering of stable (rutile), metastable (anatase and brookite), and unstable (columbite) TiO<sub>2</sub> polymorphs is assessed via density functional theory (DFT). Considering the issues involving electron–electron interaction and charge delocalization in TiO<sub>2</sub><a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> calculations, relative energetic ordering predictions are evaluated over trends varying Ti Hubbard <i>U</i><sub>3d</sub> or exact exchange fraction parameter values. Energetic trends formed from varying <i>U</i><sub>3d</sub> predict experimentally consistent energetic ordering over <i>U</i><sub>3d</sub> intervals when using GGA-based functionals, regardless of pseudopotential selection. Given pertinent linear response calculated Hubbard <i>U</i> values, these results enable TiO<sub>2</sub> polymorph energetic ordering prediction. Here, the hybrid functional calculations involving rutile–anatase relative energetics, though demonstrating experimentally consistent energetic ordering over exact exchange fraction ranges, are not accompanied by predicted fractions, for a first-principles methodology capable of calculating exact exchange fractions precisely predicting TiO<sub>2</sub> polymorph energetic ordering is not available.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 73<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1021/acs.jpcc.5b05338" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1234078" data-product-type="Journal Article" data-product-subtype="PA" >https://doi.org/10.1021/acs.jpcc.5b05338</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>