DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tandem luminescent solar concentrators based on engineered quantum dots

Abstract

Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. In conclusion, the efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.

Authors:
 [1];  [2]; ORCiD logo [3]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chinese Academy of Sciences, Dalian (China)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beijing Institute of Technology, Beijing (China)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1481145
Report Number(s):
LA-UR-17-31488
Journal ID: ISSN 1749-4885
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Nature Photonics
Additional Journal Information:
Journal Volume: 12; Journal Issue: 2; Journal ID: ISSN 1749-4885
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Wu, Kaifeng, Li, Hongbo, and Klimov, Victor Ivanovich. Tandem luminescent solar concentrators based on engineered quantum dots. United States: N. p., 2018. Web. doi:10.1038/s41566-017-0070-7.
Wu, Kaifeng, Li, Hongbo, & Klimov, Victor Ivanovich. Tandem luminescent solar concentrators based on engineered quantum dots. United States. https://doi.org/10.1038/s41566-017-0070-7
Wu, Kaifeng, Li, Hongbo, and Klimov, Victor Ivanovich. Mon . "Tandem luminescent solar concentrators based on engineered quantum dots". United States. https://doi.org/10.1038/s41566-017-0070-7. https://www.osti.gov/servlets/purl/1481145.
@article{osti_1481145,
title = {Tandem luminescent solar concentrators based on engineered quantum dots},
author = {Wu, Kaifeng and Li, Hongbo and Klimov, Victor Ivanovich},
abstractNote = {Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. In conclusion, the efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.},
doi = {10.1038/s41566-017-0070-7},
journal = {Nature Photonics},
number = 2,
volume = 12,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2018},
month = {Mon Jan 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 207 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 | Figure 1 |: The concept of solar-spectrum splitting in a tandem LSC. a, A short-wavelength portion of the solar spectrum is absorbed by LSC’s first-layer (LSC-1) and the reemitted light (orange arrows) is guided towards edge-mounted PVs. The longer-wavelength portion of the solar spectrum transmitted through LSC-1 is harvested bymore » LSC-2 equipped with its own set of PVs. For the best performance, this scheme should utilize band-gap-matched solar cells (PV-1 and PV-2; left). However, as discussed in the text, the overall LSC performance can be enhanced even with the same type of PVs used for both layers (right). b, The absorption (purple) and PL (orange) spectra of Mn2+-doped CdxZn1-xS/ZnS QDs used in LSC-1 along with the AM 1.5G solar spectrum (grey shading) and a typical Si PV external quantum efficiency (EQE) spectrum (green dashed line); top. The absorption (brown) and PL (red) spectra of CuInSe2/ZnSQDs used in LSC-2 along with the AM 1.5G spectrum filtered by LSC-1; bottom.« less

Save / Share:

Works referenced in this record:

High-Efficiency Organic Solar Concentrators for Photovoltaics
journal, July 2008


Simple yet Versatile Synthesis of CuInSe x S 2– x Quantum Dots for Sunlight Harvesting
journal, May 2014

  • McDaniel, Hunter; Koposov, Alexey Y.; Draguta, Sergiu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 30
  • DOI: 10.1021/jp5004903

Over 30% efficient InGaP/GaAs tandem solar cells
journal, January 1997

  • Takamoto, Tatsuya; Ikeda, Eiji; Kurita, Hiroshi
  • Applied Physics Letters, Vol. 70, Issue 3, p. 381-383
  • DOI: 10.1063/1.118419

Near-Infrared Harvesting Transparent Luminescent Solar Concentrators
journal, May 2014

  • Zhao, Yimu; Meek, Garrett A.; Levine, Benjamin G.
  • Advanced Optical Materials, Vol. 2, Issue 7
  • DOI: 10.1002/adom.201400103

Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals
journal, August 2013

  • Yarema, Olesya; Bozyigit, Deniz; Rousseau, Ian
  • Chemistry of Materials, Vol. 25, Issue 18
  • DOI: 10.1021/cm402306q

Perovskite quantum dots integrated in large-area luminescent solar concentrators
journal, July 2017


Solar energy conversion with fluorescent collectors
journal, October 1977


Solar cell efficiency tables (version 42): Solar cell efficiency tables
journal, July 2013

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 21, Issue 5
  • DOI: 10.1002/pip.2404

Solar Power Concentrators for Space Applications
journal, June 2016

  • Pritchard, Joshua; Simon, Kiri; Dowd, Cameron
  • PAM Review: Energy Science & Technology, Vol. 3
  • DOI: 10.5130/pamr.v3i0.1413

Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots
journal, April 2013

  • Krumer, Zachar; Pera, Suzanne J.; van Dijk-Moes, Relinde J. A.
  • Solar Energy Materials and Solar Cells, Vol. 111
  • DOI: 10.1016/j.solmat.2012.12.028

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots
journal, August 2015

  • Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco
  • Nature Nanotechnology, Vol. 10, Issue 10
  • DOI: 10.1038/nnano.2015.178

Transparent Luminescent Solar Concentrators for Large-Area Solar Windows Enabled by Massive Stokes-Shift Nanocluster Phosphors
journal, April 2013


Visual performance of red luminescent solar concentrating windows in an office environment
journal, February 2016


Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration
journal, August 2015


Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots
journal, February 2017

  • Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena
  • Nature Photonics, Vol. 11, Issue 3
  • DOI: 10.1038/nphoton.2017.5

Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix
journal, April 2014

  • Meinardi, Francesco; Colombo, Annalisa; Velizhanin, Kirill A.
  • Nature Photonics, Vol. 8, Issue 5, p. 392-399
  • DOI: 10.1038/nphoton.2014.54

Bright CuInS 2 /CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators
journal, January 2015

  • Knowles, Kathryn E.; Kilburn, Troy B.; Alzate, Dane G.
  • Chemical Communications, Vol. 51, Issue 44
  • DOI: 10.1039/C5CC02007G

Luminescent solar concentrators 1: Theory of operation and techniques for performance evaluation
journal, January 1979

  • Batchelder, J. S.; Zewai, A. H.; Cole, T.
  • Applied Optics, Vol. 18, Issue 18
  • DOI: 10.1364/AO.18.003090

A new approach to modelling quantum dot concentrators
journal, February 2003


A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry
journal, December 2016

  • Cambié, Dario; Zhao, Fang; Hessel, Volker
  • Angewandte Chemie International Edition, Vol. 56, Issue 4
  • DOI: 10.1002/anie.201611101

A luminescent solar concentrator with 7.1% power conversion efficiency
journal, December 2008

  • Slooff, L. H.; Bende, E. E.; Burgers, A. R.
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 2, Issue 6
  • DOI: 10.1002/pssr.200802186

Enhancement of Power Output From a Large-Area Luminescent Solar Concentrator With 4.8× Concentration via Solar Cell Current Matching
journal, May 2017

  • Wilson, Lindsay R.; Klampaftis, Efthymios; Richards, Bryce S.
  • IEEE Journal of Photovoltaics, Vol. 7, Issue 3
  • DOI: 10.1109/JPHOTOV.2017.2668606

Increasing the efficiency of fluorescent concentrator systems
journal, February 2009

  • Goldschmidt, Jan Christoph; Peters, Marius; Bösch, Armin
  • Solar Energy Materials and Solar Cells, Vol. 93, Issue 2
  • DOI: 10.1016/j.solmat.2008.09.048

Spectroscopic and Device Aspects of Nanocrystal Quantum Dots
journal, September 2016


Analysis of Optical Losses in High-Efficiency CuInS 2 -Based Nanocrystal Luminescent Solar Concentrators: Balancing Absorption versus Scattering
journal, February 2017

  • Sumner, Ryan; Eiselt, Steven; Kilburn, Troy B.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 6
  • DOI: 10.1021/acs.jpcc.6b12379

Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission
journal, February 2011

  • Li, Liang; Pandey, Anshu; Werder, Donald J.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1176-1179
  • DOI: 10.1021/ja108261h

Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators
journal, August 2011

  • Bomm, Jana; Büchtemann, Andreas; Chatten, Amanda J.
  • Solar Energy Materials and Solar Cells, Vol. 95, Issue 8
  • DOI: 10.1016/j.solmat.2011.02.027

Magneto-Optical Properties of CuInS 2 Nanocrystals
journal, November 2014

  • Rice, William D.; McDaniel, Hunter; Klimov, Victor I.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 23
  • DOI: 10.1021/jz502154m

CuInSe 2 Quantum Dot Solar Cells with High Open-Circuit Voltage
journal, June 2013

  • Panthani, Matthew G.; Stolle, C. Jackson; Reid, Dariya K.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 12
  • DOI: 10.1021/jz4010015

On the ability of Förster resonance energy transfer to enhance luminescent solar concentrator efficiency
journal, February 2017


Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600−1000 nm
journal, February 2011

  • Rurack, Knut; Spieles, Monika
  • Analytical Chemistry, Vol. 83, Issue 4
  • DOI: 10.1021/ac101329h

Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment
journal, December 2011

  • Debije, Michael G.; Verbunt, Paul P. C.
  • Advanced Energy Materials, Vol. 2, Issue 1
  • DOI: 10.1002/aenm.201100554

Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%
journal, March 2016

  • Du, Jun; Du, Zhonglin; Hu, Jin-Song
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00615

Quality Factor of Luminescent Solar Concentrators and Practical Concentration Limits Attainable with Semiconductor Quantum Dots
journal, May 2016


Luminescent greenhouse collector for solar radiation
journal, January 1976


A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers
journal, November 2015

  • Gutierrez, Gregory D.; Coropceanu, Igor; Bawendi, Moungi G.
  • Advanced Materials, Vol. 28, Issue 3
  • DOI: 10.1002/adma.201504358

Hybrid Perovskite Thin Films as Highly Efficient Luminescent Solar Concentrators
journal, September 2016

  • Nikolaidou, Katerina; Sarang, Som; Hoffman, Christine
  • Advanced Optical Materials, Vol. 4, Issue 12
  • DOI: 10.1002/adom.201600634

Zero-Reabsorption Doped-Nanocrystal Luminescent Solar Concentrators
journal, March 2014

  • Erickson, Christian S.; Bradshaw, Liam R.; McDowall, Stephen
  • ACS Nano, Vol. 8, Issue 4
  • DOI: 10.1021/nn406360w

Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency
journal, June 2014

  • Coropceanu, Igor; Bawendi, Moungi G.
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501627e

Thick-Shell CuInS 2 /ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths
journal, February 2017


Luminescence in colloidal Mn2+-doped semiconductor nanocrystals
journal, July 2008

  • Beaulac, Rémi; Archer, Paul I.; Gamelin, Daniel R.
  • Journal of Solid State Chemistry, Vol. 181, Issue 7
  • DOI: 10.1016/j.jssc.2008.05.001

Absorption Enhancement in “Giant” Core/Alloyed-Shell Quantum Dots for Luminescent Solar Concentrator
journal, August 2016


Nanocrystals for Luminescent Solar Concentrators
journal, January 2015

  • Bradshaw, Liam R.; Knowles, Kathryn E.; McDowall, Stephen
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504510t

Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides
journal, December 2012

  • Santra, Pralay K.; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 135, Issue 2
  • DOI: 10.1021/ja310737m

Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting
journal, June 2007

  • Sholin, V.; Olson, J. D.; Carter, S. A.
  • Journal of Applied Physics, Vol. 101, Issue 12
  • DOI: 10.1063/1.2748350

Singlet–Triplet Splittings in the Luminescent Excited States of Colloidal Cu + :CdSe, Cu + :InP, and CuInS 2 Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons
journal, September 2015

  • Knowles, Kathryn E.; Nelson, Heidi D.; Kilburn, Troy B.
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b08547

Luminescent Solar Concentrators - A review of recent results
journal, January 2008

  • Sark, Wilfried G. J. H. M. van; Barnham, Keith W. J.; Slooff, Lenneke H.
  • Optics Express, Vol. 16, Issue 26
  • DOI: 10.1364/OE.16.021773

A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry
journal, December 2016


Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots
conference, January 2012

  • Krumer, Zachar; Pera, Suzanne J.; van Dijk - Moes, Relinde J. A.
  • Optical Nanostructures and Advanced Materials for Photovoltaics, Renewable Energy and the Environment Optics and Photonics Congress
  • DOI: 10.1364/pv.2012.pw2b.3

Works referencing / citing this record:

Zero‐Dimensional Perovskite Nanocrystals for Efficient Luminescent Solar Concentrators
journal, May 2019

  • Zhao, Haiguang; Sun, Ruijia; Wang, Zhaofen
  • Advanced Functional Materials, Vol. 29, Issue 30
  • DOI: 10.1002/adfm.201902262

Evidence for the Band‐Edge Exciton of CuInS 2 Nanocrystals Enables Record Efficient Large‐Area Luminescent Solar Concentrators
journal, November 2019

  • Anand, Abhinav; Zaffalon, Matteo L.; Gariano, Graziella
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201906629

Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics
journal, July 2018

  • Kirmani, Ahmad R.; Sheikh, Arif D.; Niazi, Muhammad R.
  • Advanced Materials, Vol. 30, Issue 35
  • DOI: 10.1002/adma.201801661

Highly Efficient Semitransparent Organic Solar Cells with Color Rendering Index Approaching 100
journal, January 2019


Near‐Infrared‐Emitting Five‐Monolayer Thick Copper‐Doped CdSe Nanoplatelets
journal, August 2019

  • Sharma, Ashma; Sharma, Manoj; Gungor, Kivanc
  • Advanced Optical Materials, Vol. 7, Issue 22
  • DOI: 10.1002/adom.201900831

Emission Color Manipulation in Transparent Nanocrystals‐in‐Glass Composites Fabricated by Solution‐Combustion Process
journal, March 2020

  • Pan, Qiwen; Ouyang, Tianchang; Wu, Xintong
  • Advanced Optical Materials, Vol. 8, Issue 6
  • DOI: 10.1002/adom.201901696

Ultrafast Dynamics of Charge Transfer and Photochemical Reactions in Solar Energy Conversion
journal, October 2018


Eco‐Friendly Colloidal Quantum Dot‐Based Luminescent Solar Concentrators
journal, March 2019


The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic Nanomaterials
journal, October 2018

  • Mazzaro, Raffaello; Vomiero, Alberto
  • Advanced Energy Materials, Vol. 8, Issue 33
  • DOI: 10.1002/aenm.201801903

Review on the Role of Polymers in Luminescent Solar Concentrators
journal, September 2018

  • Li, Yilin; Zhang, Xueqiao; Zhang, Yongcao
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 57, Issue 3
  • DOI: 10.1002/pola.29192

Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications
journal, January 2020


Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators
journal, January 2019


Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths
journal, January 2019


Harnessing the properties of colloidal quantum dots in luminescent solar concentrators
journal, January 2018

  • Zhou, Yufeng; Zhao, Haiguang; Ma, Dongling
  • Chemical Society Reviews, Vol. 47, Issue 15
  • DOI: 10.1039/c7cs00701a

Tailoring the interfacial structure of colloidal “giant” quantum dots for optoelectronic applications
journal, January 2018

  • Zhao, Haiguang; Liu, Jiabin; Vidal, François
  • Nanoscale, Vol. 10, Issue 36
  • DOI: 10.1039/c8nr04313b

Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators
journal, January 2019

  • Tong, Jianyu; Luo, Jingwei; Shi, Li
  • Journal of Materials Chemistry A, Vol. 7, Issue 9
  • DOI: 10.1039/c8ta12149d

Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots
journal, January 2018

  • Liu, Guiju; Zhao, Haiguang; Diao, Feiyu
  • Journal of Materials Chemistry C, Vol. 6, Issue 37
  • DOI: 10.1039/c8tc02532k

Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators
journal, January 2019

  • Ma, Wenwen; Li, Wenjing; Liu, Ruiyuan
  • Chemical Communications, Vol. 55, Issue 52
  • DOI: 10.1039/c9cc02676b

High-performance laminated luminescent solar concentrators based on colloidal carbon quantum dots
journal, January 2019

  • Zhao, Haiguang; Liu, Guiju; Han, Guangting
  • Nanoscale Advances, Vol. 1, Issue 12
  • DOI: 10.1039/c9na00527g

Quantum-cutting Yb 3+ -doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators
journal, January 2019

  • Cohen, Theodore A.; Milstein, Tyler J.; Kroupa, Daniel M.
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/c9ta01261c

Integration of photoelectrochemical devices and luminescent solar concentrators based on giant quantum dots for highly stable hydrogen generation
journal, January 2019

  • Liu, Guiju; Sun, Baofen; Li, Hongliang
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/c9ta06437k

Luminescent solar concentrators based on thermally activated delayed fluorescence dyes
journal, January 2020

  • Mateen, Fahad; Lee, Sae Youn; Hong, Sung-Kyu
  • Journal of Materials Chemistry A, Vol. 8, Issue 7
  • DOI: 10.1039/c9ta13312g

External stokes shift of perovskite nanocrystals enlarged by photon recycling
journal, January 2019

  • Gan, Zhixing; Chen, Weijian; Yuan, Lin
  • Applied Physics Letters, Vol. 114, Issue 1
  • DOI: 10.1063/1.5081805

CdSe/CdS–poly(cyclohexylethylene) thin film luminescent solar concentrators
journal, October 2019

  • Connell, Ryan; Keil, John; Peterson, Colin
  • APL Materials, Vol. 7, Issue 10
  • DOI: 10.1063/1.5121441

Single-channel UV/vis dual-band detection with ZnCdS:Mn/ZnS core/shell quantum dots
journal, December 2018


Review of Core/Shell Quantum Dots Technology Integrated into Building’s Glazing
journal, March 2019

  • AbouElhamd, Amira; Al-Sallal, Khaled; Hassan, Ahmed
  • Energies, Vol. 12, Issue 6
  • DOI: 10.3390/en12061058

Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation
journal, March 2019

  • Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal
  • Energies, Vol. 12, Issue 6
  • DOI: 10.3390/en12061080

Optoelectronic Properties of Ternary I–III–VI 2 Semiconductor Nanocrystals: Bright Prospects with Elusive Origins
journal, March 2019

  • Berends, Anne C.; Mangnus, Mark J. J.; Xia, Chenghui
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 7
  • DOI: 10.1021/acs.jpclett.8b03653

Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS 2 Quantum Dots
journal, July 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.