DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene

Abstract

A combined experimental and kinetic modeling study is presented to improve the understanding of the formation of polycyclic aromatic hydrocarbons at pyrolysis conditions. The copyrolysis of cyclopentadiene (CPD) and ethene was studied in a continuous flow tubular reactor at a pressure of 0.17 MPa and a dilution of 1 mol CPD/1 mol ethene/10 mol N2. The temperature was varied from 873 to 1163 K, resulting in cyclopentadiene conversions between 1 and 92%. Using an automated reaction network generator, RMG, we present an elementary step kinetic model for CPD pyrolysis that accurately predicts the initial formation of aromatic products. The model is able to reproduce the product yields measured during the pyrolysis of pure cyclopentadiene and the copyrolysis of cyclopentadiene and ethene. The addition of ethene as coreactant increases the benzene and toluene selectivity. In the absence of ethene, benzene formation is initiated by addition of a cyclopentadienyl radical to cyclopentadiene, following a complicated series of isomerizations and loss of a butadienyl radical. In the presence of ethene, the main pathway for the formation of benzene + CH3 shifts to ethene + cyclopentadiene. Toluene formation is initiated by vinyl radical addition to cyclopentadiene. Without the addition of ethene, vinyl radicals aremore » mainly formed by hydrogen radical addition to ethyne. As a result, when ethene is added as coreactant, vinyl radical production happens via hydrogen abstraction from ethene.« less

Authors:
 [1];  [1];  [2]; ORCiD logo [1];  [3]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]
  1. Ghent Univ., Gent (Belgium)
  2. ExxonMobil Research and Engineering, Annandale, NJ (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Combustion Energy Frontier Research Center (CEFRC); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1480083
Grant/Contract Number:  
SC0001198; SC0014901; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Energy and Fuels
Additional Journal Information:
Journal Volume: 32; Journal Issue: 3; Journal ID: ISSN 0887-0624
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Vervust, Alexander J., Djokic, Marko R., Merchant, Shamel S., Carstensen, Hans-Heinrich, Long, Alan E., Marin, Guy B., Green, William H., and Van Geem, Kevin M. Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene. United States: N. p., 2018. Web. doi:10.1021/acs.energyfuels.7b03560.
Vervust, Alexander J., Djokic, Marko R., Merchant, Shamel S., Carstensen, Hans-Heinrich, Long, Alan E., Marin, Guy B., Green, William H., & Van Geem, Kevin M. Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene. United States. https://doi.org/10.1021/acs.energyfuels.7b03560
Vervust, Alexander J., Djokic, Marko R., Merchant, Shamel S., Carstensen, Hans-Heinrich, Long, Alan E., Marin, Guy B., Green, William H., and Van Geem, Kevin M. Wed . "Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene". United States. https://doi.org/10.1021/acs.energyfuels.7b03560. https://www.osti.gov/servlets/purl/1480083.
@article{osti_1480083,
title = {Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene},
author = {Vervust, Alexander J. and Djokic, Marko R. and Merchant, Shamel S. and Carstensen, Hans-Heinrich and Long, Alan E. and Marin, Guy B. and Green, William H. and Van Geem, Kevin M.},
abstractNote = {A combined experimental and kinetic modeling study is presented to improve the understanding of the formation of polycyclic aromatic hydrocarbons at pyrolysis conditions. The copyrolysis of cyclopentadiene (CPD) and ethene was studied in a continuous flow tubular reactor at a pressure of 0.17 MPa and a dilution of 1 mol CPD/1 mol ethene/10 mol N2. The temperature was varied from 873 to 1163 K, resulting in cyclopentadiene conversions between 1 and 92%. Using an automated reaction network generator, RMG, we present an elementary step kinetic model for CPD pyrolysis that accurately predicts the initial formation of aromatic products. The model is able to reproduce the product yields measured during the pyrolysis of pure cyclopentadiene and the copyrolysis of cyclopentadiene and ethene. The addition of ethene as coreactant increases the benzene and toluene selectivity. In the absence of ethene, benzene formation is initiated by addition of a cyclopentadienyl radical to cyclopentadiene, following a complicated series of isomerizations and loss of a butadienyl radical. In the presence of ethene, the main pathway for the formation of benzene + CH3 shifts to ethene + cyclopentadiene. Toluene formation is initiated by vinyl radical addition to cyclopentadiene. Without the addition of ethene, vinyl radicals are mainly formed by hydrogen radical addition to ethyne. As a result, when ethene is added as coreactant, vinyl radical production happens via hydrogen abstraction from ethene.},
doi = {10.1021/acs.energyfuels.7b03560},
journal = {Energy and Fuels},
number = 3,
volume = 32,
place = {United States},
year = {Wed Feb 07 00:00:00 EST 2018},
month = {Wed Feb 07 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mutagenicity of polycyclic aromatic hydrocarbons
journal, January 1977


Mutagenicity of Polycyclic Aromatic Hydrocarbons and Amines: A Conformational Hypothesis
journal, December 1984


A fully coupled simulation of PAH and soot growth with a population balance model
journal, January 2013

  • Chen, Dongping; Zainuddin, Zakwan; Yapp, Edward
  • Proceedings of the Combustion Institute, Vol. 34, Issue 1
  • DOI: 10.1016/j.proci.2012.06.089

Relative rates of coke formation from hydrocarbons in steam cracking of naphtha. 3. Aromatic hydrocarbons
journal, November 1993

  • Kopinke, Frank Dieter; Zimmermann, Gerhard; Reyniers, Geerd C.
  • Industrial & Engineering Chemistry Research, Vol. 32, Issue 11
  • DOI: 10.1021/ie00023a027

The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame
journal, January 2010

  • Hansen, N.; Li, W.; Law, M. E.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 38
  • DOI: 10.1039/c0cp00241k

Unravelling combustion mechanisms through a quantitative understanding of elementary reactions
journal, January 2005

  • Miller, James A.; Pilling, Michael J.; Troe, Jürgen
  • Proceedings of the Combustion Institute, Vol. 30, Issue 1
  • DOI: 10.1016/j.proci.2004.08.281

Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels
journal, October 1992


Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties
journal, January 2000


Reactions of allylic radicals that impact molecular weight growth kinetics
journal, January 2015

  • Wang, Kun; Villano, Stephanie M.; Dean, Anthony M.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 9
  • DOI: 10.1039/C4CP05308G

Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5
journal, January 2007

  • Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 31
  • DOI: 10.1039/b703261g

Dissociation of C3H3I and rates for C3H3 combination at high temperatures
journal, January 2011

  • Tranter, Robert S.; Yang, Xueliang; Kiefer, John H.
  • Proceedings of the Combustion Institute, Vol. 33, Issue 1
  • DOI: 10.1016/j.proci.2010.05.030

Reactions between Resonance-Stabilized Radicals: Propargyl + Allyl
journal, April 2010

  • Miller, James A.; Klippenstein, Stephen J.; Georgievskii, Yuri
  • The Journal of Physical Chemistry A, Vol. 114, Issue 14
  • DOI: 10.1021/jp910604b

Modeling of two- and three-ring aromatics formation in the pyrolysis of toluene
journal, January 2013


Sooting behavior in temperature-controlled laminar diffusion flames
journal, October 1984


The effects of equivalence ratio on the formation of polycyclic aromatic hydrocarbons and soot in premixed ethane flames
journal, June 2000


The Determination of Bond Dissociation Energies by Pyrolytic Methods.
journal, August 1950


Mecanismes de fragmentation pyrolytique du phenol et des cresols
journal, January 1974


Rates, products, and mechanisms in the gas-phase hydrogenolysis of phenol between 922 and 1175 K
journal, May 1989

  • Manion, Jeffrey A.; Louw, Robert
  • The Journal of Physical Chemistry, Vol. 93, Issue 9
  • DOI: 10.1021/j100346a040

Shock Tube Study of High-Temperature Reactions of Cyclopentadiene
journal, January 1996

  • Roy, Karin; Frank, Peter; Just, Thomas
  • Israel Journal of Chemistry, Vol. 36, Issue 3
  • DOI: 10.1002/ijch.199600038

Kinetics of the cyclopentadiene decay and the recombination of cyclopentadienyl radicals with H-atoms: Enthalpy of formation of the cyclopentadienyl radical
journal, January 2001

  • Roy, K.; Braun-Unkhoff, M.; Frank, P.
  • International Journal of Chemical Kinetics, Vol. 33, Issue 12
  • DOI: 10.1002/kin.10005

Cyclopentadiene combustion in a plug flow reactor near 1150K
journal, January 2009


Pyrolytic Hydrocarbon Growth from Cyclopentadiene
journal, December 2010

  • Kim, Do Hyong; Mulholland, James A.; Wang, Dong
  • The Journal of Physical Chemistry A, Vol. 114, Issue 47
  • DOI: 10.1021/jp106749k

An experimental and kinetic modeling study of cyclopentadiene pyrolysis: First growth of polycyclic aromatic hydrocarbons
journal, November 2014


Reactions of Allyl Radicals with Olefins
journal, June 1960

  • Bryce, W. A.; Ruzicka, D. J.
  • Canadian Journal of Chemistry, Vol. 38, Issue 6
  • DOI: 10.1139/v60-120

Cyclopentene decomposition in shock waves
journal, February 1974

  • Lewis, David K.; Sarr, Michael; Keil, Mark
  • The Journal of Physical Chemistry, Vol. 78, Issue 4
  • DOI: 10.1021/j100597a025

Detailed kinetic modeling of autocatalysis in methane pyrolysis
journal, February 1990

  • Dean, Anthony M.
  • The Journal of Physical Chemistry, Vol. 94, Issue 4
  • DOI: 10.1021/j100367a043

Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography
journal, September 2012


Experimental and kinetic modeling study of the oxidation of benzene
journal, January 2000


Radical Chemistry in the Thermal Decomposition of Anisole and Deuterated Anisoles: An Investigation of Aromatic Growth
journal, September 2010

  • Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 34
  • DOI: 10.1021/jp102046p

The thermal decomposition of 2,5-dimethylfuran
journal, January 2013

  • Djokic, Marko; Carstensen, Hans-Heinrich; Van Geem, Kevin M.
  • Proceedings of the Combustion Institute, Vol. 34, Issue 1
  • DOI: 10.1016/j.proci.2012.05.066

Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran
journal, January 2015

  • Alexandrino, Katiuska; Millera, Ángela; Bilbao, Rafael
  • Proceedings of the Combustion Institute, Vol. 35, Issue 2
  • DOI: 10.1016/j.proci.2014.06.002

Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety
journal, January 1996

  • Melius, Carl F.; Colvin, Michael E.; Marinov, Nick M.
  • Symposium (International) on Combustion, Vol. 26, Issue 1
  • DOI: 10.1016/S0082-0784(96)80276-1

Can the C 5 H 5 + C 5 H 5 → C 10 H 10 → C 10 H 9 + H/C 10 H 8 + H 2 Reaction Produce Naphthalene? An Ab Initio/RRKM Study
journal, September 2009

  • Mebel, A. M.; Kislov, V. V.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 36
  • DOI: 10.1021/jp905931j

On the kinetics of the C5H5+C5H5 reaction
journal, January 2013


Pressure dependent kinetic analysis of pathways to naphthalene from cyclopentadienyl recombination
journal, January 2018


Formation of Naphthalene, Indene, and Benzene from Cyclopentadiene Pyrolysis:  A DFT Study
journal, April 2006

  • Wang, Dong; Violi, Angela; Kim, Do Hyong
  • The Journal of Physical Chemistry A, Vol. 110, Issue 14
  • DOI: 10.1021/jp053628a

Analysis of Some Reaction Pathways Active during Cyclopentadiene Pyrolysis
journal, March 2012

  • Cavallotti, Carlo; Polino, Daniela; Frassoldati, Alessio
  • The Journal of Physical Chemistry A, Vol. 116, Issue 13
  • DOI: 10.1021/jp212151p

The Peculiar Kinetics of the Reaction between Acetylene and the Cyclopentadienyl Radical
journal, August 2005

  • Fascella, Simone; Cavallotti, Carlo; Rota, Renato
  • The Journal of Physical Chemistry A, Vol. 109, Issue 33
  • DOI: 10.1021/jp051508x

Modeling of 1,3-hexadiene, 2,4-hexadiene and 1,4-hexadiene-doped methane flames: Flame modeling, benzene and styrene formation
journal, July 2010


The kinetic modeling of soot precursors in ethylene flames
journal, January 1998

  • Faravelli, Tiziano; Goldaniga, Alessandro; Ranzi, Eliseo
  • Symposium (International) on Combustion, Vol. 27, Issue 1
  • DOI: 10.1016/S0082-0784(98)80556-0

Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO)
journal, January 1979


Fundamentally-based kinetic model for propene pyrolysis
journal, December 2015


Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels
journal, August 2012

  • Ranzi, E.; Frassoldati, A.; Grana, R.
  • Progress in Energy and Combustion Science, Vol. 38, Issue 4
  • DOI: 10.1016/j.pecs.2012.03.004

Study of the Formation of the First Aromatic Rings in the Pyrolysis of Cyclopentene
journal, December 2015

  • Herbinet, Olivier; Rodriguez, Anne; Husson, Benoit
  • The Journal of Physical Chemistry A, Vol. 120, Issue 5
  • DOI: 10.1021/acs.jpca.5b09203

Kinetic Modeling of Ethane Pyrolysis at High Conversion
journal, September 2011

  • Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang
  • The Journal of Physical Chemistry A, Vol. 115, Issue 38
  • DOI: 10.1021/jp206503d

Group additive modeling of cyclopentane pyrolysis
journal, November 2017

  • Khandavilli, Muralikrishna V.; Vermeire, Florence H.; Van de Vijver, Ruben
  • Journal of Analytical and Applied Pyrolysis, Vol. 128
  • DOI: 10.1016/j.jaap.2017.08.005

Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms
journal, June 2016

  • Gao, Connie W.; Allen, Joshua W.; Green, William H.
  • Computer Physics Communications, Vol. 203
  • DOI: 10.1016/j.cpc.2016.02.013

Genesys: Kinetic model construction using chemo-informatics
journal, October 2012

  • Vandewiele, Nick M.; Van Geem, Kevin M.; Reyniers, Marie-Françoise
  • Chemical Engineering Journal, Vol. 207-208
  • DOI: 10.1016/j.cej.2012.07.014

Quantitative Aspects of Comprehensive Two-Dimensional Gas Chromatography (GC×GC)
journal, January 1998


The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene
journal, January 2017

  • Li, Yang; Zhou, Chong-Wen; Somers, Kieran P.
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.05.052

A comprehensive experimental and modeling study of isobutene oxidation
journal, May 2016


A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation
journal, March 2016


An experimental and modeling study of propene oxidation. Part 1: Speciation measurements in jet-stirred and flow reactors
journal, November 2014


An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements
journal, February 2015


A Hierarchical and Comparative Kinetic Modeling Study of C 1 − C 2 Hydrocarbon and Oxygenated Fuels : KINETIC STUDY OF C
journal, August 2013

  • Metcalfe, Wayne K.; Burke, Sinéad M.; Ahmed, Syed S.
  • International Journal of Chemical Kinetics, Vol. 45, Issue 10
  • DOI: 10.1002/kin.20802

An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures
journal, June 2013


Rate-Based Construction of Kinetic Models for Complex Systems
journal, May 1997

  • Susnow, Roberta G.; Dean, Anthony M.; Green, William H.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 20
  • DOI: 10.1021/jp9637690

Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties
journal, September 1958

  • Benson, Sidney W.; Buss, Jerry H.
  • The Journal of Chemical Physics, Vol. 29, Issue 3
  • DOI: 10.1063/1.1744539

Automatic reaction network generation using RMG for steam cracking of n-hexane
journal, January 2006

  • Van Geem, Kevin M.; Reyniers, Marie-Francoise; Marin, Guy B.
  • AIChE Journal, Vol. 52, Issue 2
  • DOI: 10.1002/aic.10655

Comprehensive reaction mechanism for n-butanol pyrolysis and combustion
journal, January 2011


A complete basis set model chemistry. VI. Use of density functional geometries and frequencies
journal, February 1999

  • Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.
  • The Journal of Chemical Physics, Vol. 110, Issue 6
  • DOI: 10.1063/1.477924

A complete basis set model chemistry. VII. Use of the minimum population localization method
journal, April 2000

  • Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.
  • The Journal of Chemical Physics, Vol. 112, Issue 15
  • DOI: 10.1063/1.481224

Group Additive Values for the Gas Phase Standard Enthalpy of Formation of Hydrocarbons and Hydrocarbon Radicals
journal, August 2005

  • Sabbe, Maarten K.; Saeys, Mark; Reyniers, Marie-Françoise
  • The Journal of Physical Chemistry A, Vol. 109, Issue 33
  • DOI: 10.1021/jp050484r

The Penetration of a Potential Barrier by Electrons
journal, June 1930


Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation I. Rigid Frame with Attached Tops
journal, July 1942

  • Pitzer, Kenneth S.; Gwinn, William D.
  • The Journal of Chemical Physics, Vol. 10, Issue 7
  • DOI: 10.1063/1.1723744

Molpro: a general-purpose quantum chemistry program package: Molpro
journal, July 2011

  • Werner, Hans-Joachim; Knowles, Peter J.; Knizia, Gerald
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 2
  • DOI: 10.1002/wcms.82

Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether
journal, January 2008

  • Zhao, Zhenwei; Chaos, Marcos; Kazakov, Andrei
  • International Journal of Chemical Kinetics, Vol. 40, Issue 1
  • DOI: 10.1002/kin.20285

Works referencing / citing this record:

Theoretical study of sensitive reactions in phenol decomposition
journal, January 2020

  • Pratali Maffei, Luna; Pelucchi, Matteo; Faravelli, Tiziano
  • Reaction Chemistry & Engineering, Vol. 5, Issue 3
  • DOI: 10.1039/c9re00418a