DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the Mermin-Kohn-Sham theory at high temperatures

Abstract

Electronic stopping power in warm dense matter can affect energy transport and heating in astrophysical processes and internal confinement fusion. For cold condensed matter systems, stopping power can be modeled from first-principles using real-time time-dependent density functional theory (DFT). However, high temperatures (10's to 100's of eV) may be computationally prohibitive for traditional Mermin-Kohn-Sham DFT. New experimental measurements in the warm dense regime motivates the development of first-principles approaches, which can reach these temperatures. Here, we have developed a time-dependent orbital-free density functional theory, which includes a novel nonadiabatic and temperature-dependent kinetic energy density functional, for the simulation of stopping power at any temperature. The approach is nonlinear with respect to the projectile perturbation, includes all ions and electrons, and does not require a priori determination of screened interaction potentials. Finally, our results compare favorably with Kohn-Sham for temperatures in the WDM regime, especially nearing 100 eV.

Authors:
 [1];  [1];  [2];  [2];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); New York State Energy Research and Development Authority (United States)
OSTI Identifier:
1480005
Alternate Identifier(s):
OSTI ID: 1475229
Report Number(s):
LA-UR-18-27307
Journal ID: ISSN 2469-9950
Grant/Contract Number:  
AC52-06NA25396; NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 98; Journal Issue: 14; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 74 ATOMIC AND MOLECULAR PHYSICS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; core of giant planets; hot dense plasma; inertially confined plasmas; ions; quantum plasmas; solar plasma; stellar plasmas; warm-dense matter; first-principles calculations in plasma physics; self-consistent field theory; time-dependent DFT

Citation Formats

White, Alexander J., Certik, Ondrej, Ding, Y. H., Hu, S. X., and Collins, Lee A. Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the Mermin-Kohn-Sham theory at high temperatures. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.98.144302.
White, Alexander J., Certik, Ondrej, Ding, Y. H., Hu, S. X., & Collins, Lee A. Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the Mermin-Kohn-Sham theory at high temperatures. United States. https://doi.org/10.1103/PhysRevB.98.144302
White, Alexander J., Certik, Ondrej, Ding, Y. H., Hu, S. X., and Collins, Lee A. Tue . "Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the Mermin-Kohn-Sham theory at high temperatures". United States. https://doi.org/10.1103/PhysRevB.98.144302. https://www.osti.gov/servlets/purl/1480005.
@article{osti_1480005,
title = {Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the Mermin-Kohn-Sham theory at high temperatures},
author = {White, Alexander J. and Certik, Ondrej and Ding, Y. H. and Hu, S. X. and Collins, Lee A.},
abstractNote = {Electronic stopping power in warm dense matter can affect energy transport and heating in astrophysical processes and internal confinement fusion. For cold condensed matter systems, stopping power can be modeled from first-principles using real-time time-dependent density functional theory (DFT). However, high temperatures (10's to 100's of eV) may be computationally prohibitive for traditional Mermin-Kohn-Sham DFT. New experimental measurements in the warm dense regime motivates the development of first-principles approaches, which can reach these temperatures. Here, we have developed a time-dependent orbital-free density functional theory, which includes a novel nonadiabatic and temperature-dependent kinetic energy density functional, for the simulation of stopping power at any temperature. The approach is nonlinear with respect to the projectile perturbation, includes all ions and electrons, and does not require a priori determination of screened interaction potentials. Finally, our results compare favorably with Kohn-Sham for temperatures in the WDM regime, especially nearing 100 eV.},
doi = {10.1103/PhysRevB.98.144302},
journal = {Physical Review B},
number = 14,
volume = 98,
place = {United States},
year = {Tue Oct 02 00:00:00 EDT 2018},
month = {Tue Oct 02 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Toward Proton Computed Tomography
journal, February 2004

  • Sadrozinski, H. F. -W.; Bashkirov, V.; Keeney, B.
  • IEEE Transactions on Nuclear Science, Vol. 51, Issue 1
  • DOI: 10.1109/TNS.2003.823044

The physics of proton therapy
journal, March 2015


Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions
journal, August 2016

  • Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
  • Physics in Medicine and Biology, Vol. 61, Issue 17
  • DOI: 10.1088/0031-9155/61/17/6570

Influence of the Electronic Stopping Power on the Damage Rate of Yttrium-Iron Garnets Irradiated by High-Energy Heavy Ions
journal, February 1987


Charged-particle stopping powers in inertial confinement fusion plasmas
journal, May 1993


Energy loss and straggling of ions with any velocity in dense plasmas at any temperature
journal, July 1982


Energy loss of ions moving through high-density matter
journal, August 1977


Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations
journal, February 2017


Measurements of Ion Stopping Around the Bragg Peak in High-Energy-Density Plasmas
journal, November 2015


Molecular dynamics simulation of ion ranges in the 1–100 keV energy range
journal, March 1995


Charged particle motion in a highly ionized plasma
journal, May 2005


Energy loss of fast particles in confined atomic systems at very high temperatures
journal, April 1987


Energy loss of α -particle moving in warm dense deuterium plasma: Role of local field corrections
journal, November 2017

  • Fu, Zhen-Guo; Wang, Zhigang; Zhang, Ping
  • Physics of Plasmas, Vol. 24, Issue 11
  • DOI: 10.1063/1.5008581

Electronic stopping of protons for lithium in the dielectric formulation obtained from first-principles calculations
journal, August 1999

  • Mathar, Richard J.; Sabin, John R.; Trickey, S. B.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 155, Issue 3
  • DOI: 10.1016/S0168-583X(99)00295-5

Time-dependent density-functional calculation of the stopping power for protons and antiprotons in metals
journal, April 2007


Electronic stopping power of slow-light channeling ions in ZnTe from first principles
journal, May 2017


Ab initio electronic stopping power and threshold effect of channeled slow light ions in HfO 2
journal, September 2017


Electronic band structure effects in the stopping of protons in copper
journal, October 2016


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition
journal, March 2016


Transport properties of lithium hydride at extreme conditions from orbital-free molecular dynamics
journal, February 2013


Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium
journal, September 2011


Finite-temperature orbital-free DFT molecular dynamics: Coupling Profess and Quantum Espresso
journal, December 2014

  • Karasiev, Valentin V.; Sjostrom, Travis; Trickey, S. B.
  • Computer Physics Communications, Vol. 185, Issue 12
  • DOI: 10.1016/j.cpc.2014.08.023

Orbital-free density functional theory implementation with the projector augmented-wave method
journal, December 2014

  • Lehtomäki, Jouko; Makkonen, Ilja; Caro, Miguel A.
  • The Journal of Chemical Physics, Vol. 141, Issue 23
  • DOI: 10.1063/1.4903450

Petascale Orbital-Free Density Functional Theory Enabled by Small-Box Algorithms
journal, May 2016

  • Chen, Mohan; Jiang, Xiang-Wei; Zhuang, Houlong
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 6
  • DOI: 10.1021/acs.jctc.6b00326

Correlation and transport properties for mixtures at constant pressure and temperature
journal, June 2017


Transport properties of an asymmetric mixture in the dense plasma regime
journal, June 2016


Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime
journal, August 2015


First principles nonequilibrium plasma mixing
journal, January 2014


Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime
journal, September 2010


First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions
journal, October 2015


Accurate atomistic first-principles calculations of electronic stopping
journal, January 2015


Angular momentum dependent orbital-free density functional theory: Formulation and implementation
journal, April 2014


An atomic kinetic energy functional with full Weizsacker correction
journal, December 1980

  • Acharya, P. K.; Bartolotti, L. J.; Sears, S. B.
  • Proceedings of the National Academy of Sciences, Vol. 77, Issue 12
  • DOI: 10.1073/pnas.77.12.6978

Nonlocal orbital-free noninteracting free-energy functional for warm dense matter
journal, November 2013


Dynamic kinetic energy potential for orbital-free density functional theory
journal, April 2011

  • Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima
  • The Journal of Chemical Physics, Vol. 134, Issue 14
  • DOI: 10.1063/1.3574347

Understanding Quantum Plasmonics from Time-Dependent Orbital-Free Density Functional Theory
journal, June 2016

  • Xiang, Hongping; Zhang, Mingliang; Zhang, Xu
  • The Journal of Physical Chemistry C, Vol. 120, Issue 26
  • DOI: 10.1021/acs.jpcc.6b05841

Self-interaction correction to density-functional approximations for many-electron systems
journal, May 1981


Density functional theory and the von Weizsacker method
journal, August 1971


Conjugate-gradient optimization method for orbital-free density functional calculations
journal, August 2004

  • Jiang, Hong; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 121, Issue 5
  • DOI: 10.1063/1.1768163

Eine anschauliche Deutung der Gleichung von Schr�dinger
journal, November 1926


Density-Functional Theory for Time-Dependent Systems
journal, March 1984


Time-Dependent Thomas-Fermi Approach for Electron Dynamics in Metal Clusters
journal, June 1998


Theoretical foundations of quantum hydrodynamics for plasmas
journal, March 2018

  • Moldabekov, Zh. A.; Bonitz, M.; Ramazanov, T. S.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5003910

Hydrodynamic theory of an electron gas
journal, December 1999


Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films
journal, October 2008


Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail
journal, May 2016


Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory
journal, June 2017


Hydrodynamic model of the collective electron resonances in C 60 fullerene
journal, August 2017

  • Gildenburg, V. B.; Pavlichenko, I. A.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4994314

Time-dependent density-functional theory for the stopping power of an interacting electron gas for slow ions
journal, March 2005


Calculating electronic stopping power in materials from first principles
journal, July 2018


ABINIT: First-principles approach to material and nanosystem properties
journal, December 2009


Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization
journal, January 2014


Works referencing / citing this record:

Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics
journal, October 2019

  • Bergeson, Scott D.; Baalrud, Scott D.; Ellison, C. Leland
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5119144