DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Chain Length Dispersity on the Mobility of Entangled Polymers

Abstract

While nearly all theoretical and computational studies of entangled polymer melts have focused on uniform samples, polymer synthesis routes always result in some dispersity, albeit narrow, of distribution of molecular weights ( ÐM = Mw / Mn ~ 1.02 – 1.04 ). Here, the effects of dispersity on chain mobility are studied for entangled, disperse melts using a coarse-grained model for polyethylene. Polymer melts with chain lengths set to follow a Schulz-Zimm distribution for the same average Mw = 36 kg / mol with ÐM = 1.0 to 1.16, were studied for times of 600 – 800 μ s using molecular dynamics simulations. This time frame is longer than the time required to reach the diffusive regime. We find that dispersity in this range does not affect the entanglement time or tube diameter. However, while there is negligible difference in the average mobility of chains for the uniform distribution ÐM = 1.0 and ÐM = 1.02 , the shortest chains move significantly faster than the longest ones offering a constraint release pathway for the melts for larger ÐM.

Authors:
 [1];  [2];  [3];  [4];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Naval Research Lab. (NRL), Washington, DC (United States)
  3. Duke Univ., Durham, NC (United States)
  4. Clemson Univ., SC (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1478065
Alternate Identifier(s):
OSTI ID: 1462584
Report Number(s):
SAND-2018-7798J
Journal ID: ISSN 0031-9007; PRLTAO; 665881
Grant/Contract Number:  
AC04-94AL85000; NA-0003525
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 121; Journal Issue: 5; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Peters, Brandon L., Salerno, K. Michael, Ge, Ting, Perahia, Dvora, and Grest, Gary S. Effect of Chain Length Dispersity on the Mobility of Entangled Polymers. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.121.057802.
Peters, Brandon L., Salerno, K. Michael, Ge, Ting, Perahia, Dvora, & Grest, Gary S. Effect of Chain Length Dispersity on the Mobility of Entangled Polymers. United States. https://doi.org/10.1103/PhysRevLett.121.057802
Peters, Brandon L., Salerno, K. Michael, Ge, Ting, Perahia, Dvora, and Grest, Gary S. Thu . "Effect of Chain Length Dispersity on the Mobility of Entangled Polymers". United States. https://doi.org/10.1103/PhysRevLett.121.057802. https://www.osti.gov/servlets/purl/1478065.
@article{osti_1478065,
title = {Effect of Chain Length Dispersity on the Mobility of Entangled Polymers},
author = {Peters, Brandon L. and Salerno, K. Michael and Ge, Ting and Perahia, Dvora and Grest, Gary S.},
abstractNote = {While nearly all theoretical and computational studies of entangled polymer melts have focused on uniform samples, polymer synthesis routes always result in some dispersity, albeit narrow, of distribution of molecular weights ( ÐM = Mw / Mn ~ 1.02 – 1.04 ). Here, the effects of dispersity on chain mobility are studied for entangled, disperse melts using a coarse-grained model for polyethylene. Polymer melts with chain lengths set to follow a Schulz-Zimm distribution for the same average Mw = 36 kg / mol with ÐM = 1.0 to 1.16, were studied for times of 600 – 800 μ s using molecular dynamics simulations. This time frame is longer than the time required to reach the diffusive regime. We find that dispersity in this range does not affect the entanglement time or tube diameter. However, while there is negligible difference in the average mobility of chains for the uniform distribution ÐM = 1.0 and ÐM = 1.02 , the shortest chains move significantly faster than the longest ones offering a constraint release pathway for the melts for larger ÐM.},
doi = {10.1103/PhysRevLett.121.057802},
journal = {Physical Review Letters},
number = 5,
volume = 121,
place = {United States},
year = {Thu Aug 02 00:00:00 EDT 2018},
month = {Thu Aug 02 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lattice Monte Carlo Simulations of the Gyroid Phase in Monodisperse and Bidisperse Block Copolymer Systems
journal, September 2005

  • Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.
  • Macromolecules, Vol. 38, Issue 20
  • DOI: 10.1021/ma051214+

Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies
journal, February 2016


Multiscale modeling of soft matter: scaling of dynamics
journal, January 2011

  • Fritz, Dominik; Koschke, Konstantin; Harmandaris, Vagelis A.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 22
  • DOI: 10.1039/c1cp20247b

Note: Determine entanglement length through monomer mean-square displacement
journal, January 2017

  • Hou, Ji-Xuan
  • The Journal of Chemical Physics, Vol. 146, Issue 2
  • DOI: 10.1063/1.4973871

Self‐consistent theory of polydisperse entangled polymers: Linear viscoelasticity of binary blends
journal, October 1988

  • Rubinstein, Michael; Colby, Ralph H.
  • The Journal of Chemical Physics, Vol. 89, Issue 8
  • DOI: 10.1063/1.455620

The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release
journal, November 2001

  • Wagner, M. H.; Rubio, P.; Bastian, H.
  • Journal of Rheology, Vol. 45, Issue 6
  • DOI: 10.1122/1.1413503

Relating the shear‐thinning curve to the molecular weight distribution in linear polymer melts
journal, March 1996


Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular Weights
journal, October 1999

  • Fetters, Lewis J.; Lohse, David J.; Milner, Scott T.
  • Macromolecules, Vol. 32, Issue 20
  • DOI: 10.1021/ma990620o

Why are coarse-grained force fields too fast? A look at dynamics of four coarse-grained polymers
journal, January 2011

  • Depa, Praveen; Chen, Chunxia; Maranas, Janna K.
  • The Journal of Chemical Physics, Vol. 134, Issue 1
  • DOI: 10.1063/1.3513365

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Dynamics of Polystyrene Melts through Hierarchical Multiscale Simulations
journal, February 2009

  • Harmandaris, Vagelis A.; Kremer, Kurt
  • Macromolecules, Vol. 42, Issue 3
  • DOI: 10.1021/ma8018624

Entanglement constraints in polymer melts. A neutron spin echo study
journal, November 1992

  • Richter, D.; Butera, R.; Fetters, L. J.
  • Macromolecules, Vol. 25, Issue 23
  • DOI: 10.1021/ma00049a011

Relaxation Dynamics in Mixtures of Long and Short Chains:  Tube Dilation and Impeded Curvilinear Diffusion
journal, July 2003

  • Wang, Shanfeng; Wang, Shi-Qing; Halasa, A.
  • Macromolecules, Vol. 36, Issue 14
  • DOI: 10.1021/ma0210426

Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process
journal, August 1998

  • Chiefari, John; Chong, Y. K. (Bill); Ercole, Frances
  • Macromolecules, Vol. 31, Issue 16
  • DOI: 10.1021/ma9804951

Viscosity of Entangling Polydisperse Polymers
journal, September 1967

  • Graessley, William W.
  • The Journal of Chemical Physics, Vol. 47, Issue 6
  • DOI: 10.1063/1.1712222

End-Bridging Monte Carlo:  A Fast Algorithm for Atomistic Simulation of Condensed Phases of Long Polymer Chains
journal, July 1999

  • Mavrantzas, Vlasis G.; Boone, Travis D.; Zervopoulou, Evangelia
  • Macromolecules, Vol. 32, Issue 15
  • DOI: 10.1021/ma981745g

Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations
journal, July 2002

  • Padding, J. T.; Briels, W. J.
  • The Journal of Chemical Physics, Vol. 117, Issue 2
  • DOI: 10.1063/1.1481859

Reconciliation of the Molecular Weight Dependence of Diffusion and Viscosity in Entangled Polymers
journal, October 1999


A full-chain constitutive model for bidisperse blends of linear polymers
journal, July 2012

  • Read, D. J.; Jagannathan, K.; Sukumaran, S. K.
  • Journal of Rheology, Vol. 56, Issue 4
  • DOI: 10.1122/1.4707948

Coarse-Grained Modeling of Polyethylene Melts: Effect on Dynamics
journal, May 2017

  • Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 6
  • DOI: 10.1021/acs.jctc.7b00241

Molecular dynamics study of diffusion in bidisperse polymer melts
journal, February 2000

  • Barsky, Sandra
  • The Journal of Chemical Physics, Vol. 112, Issue 7
  • DOI: 10.1063/1.480925

Dynamics of polymers in polydisperse melts
journal, August 1987

  • Doi, M.; Graessley, W. W.; Helfand, E.
  • Macromolecules, Vol. 20, Issue 8
  • DOI: 10.1021/ma00174a035

Molecular-scale simulation of cross-flow migration in polymer melts
journal, November 2014


Coarse grained model of diffusion in entangled bidisperse polymer melts
journal, October 2007

  • Picu, R. C.; Rakshit, A.
  • The Journal of Chemical Physics, Vol. 127, Issue 14
  • DOI: 10.1063/1.2795728

Influence of molecular-weight polydispersity on the glass transition of polymers
journal, January 2016


Clear Evidence of Reptation in Polyethylene from Neutron Spin-Echo Spectroscopy
journal, July 1998


Equilibration of long chain polymer melts in computer simulations
journal, December 2003

  • Auhl, Rolf; Everaers, Ralf; Grest, Gary S.
  • The Journal of Chemical Physics, Vol. 119, Issue 24
  • DOI: 10.1063/1.1628670

Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers
journal, April 1991


Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242
journal, August 2001

  • Padding, J. T.; Briels, W. J.
  • The Journal of Chemical Physics, Vol. 115, Issue 6
  • DOI: 10.1063/1.1385162

Effects of polydispersity on linear viscoelasticity in entangled polymer melts
journal, May 1992

  • Wasserman, S. H.; Graessley, W. W.
  • Journal of Rheology, Vol. 36, Issue 4
  • DOI: 10.1122/1.550363

A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions
journal, May 2002

  • Fukunaga, Hiroo; Takimoto, Jun-ichi; Doi, Masao
  • The Journal of Chemical Physics, Vol. 116, Issue 18
  • DOI: 10.1063/1.1469609

Dynamics in entangled polyethylene melts
journal, October 2016

  • Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.
  • The European Physical Journal Special Topics, Vol. 225, Issue 8-9
  • DOI: 10.1140/epjst/e2016-60142-7

Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts
journal, October 1995

  • Pant, P. V. Krishna; Theodorou, Doros N.
  • Macromolecules, Vol. 28, Issue 21
  • DOI: 10.1021/ma00125a027

Statics and Dynamics of Bidisperse Polymer Melts:  A Monte Carlo Study of the Bond-Fluctuation Model
journal, June 1998

  • Baschnagel, J.; Paul, W.; Tries, V.
  • Macromolecules, Vol. 31, Issue 12
  • DOI: 10.1021/ma9718863

Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt
journal, May 2004

  • Vega, J. F.; Rastogi, S.; Peters, G. W. M.
  • Journal of Rheology, Vol. 48, Issue 3
  • DOI: 10.1122/1.1718367

Atomistic Molecular Dynamics Simulation of Polydisperse Linear Polyethylene Melts
journal, November 1998

  • Harmandaris, Vagelis A.; Mavrantzas, Vlasis G.; Theodorou, Doros N.
  • Macromolecules, Vol. 31, Issue 22
  • DOI: 10.1021/ma980698p

Kinetic theory of polymer melts. 7. Polydispersity effects
journal, November 1986

  • Schieber, Jay D.; Curtiss, Charles F.; Bird, R. Byron
  • Industrial & Engineering Chemistry Fundamentals, Vol. 25, Issue 4
  • DOI: 10.1021/i100024a003

Atom Transfer Radical Polymerization
journal, September 2001

  • Matyjaszewski, Krzysztof; Xia, Jianhui
  • Chemical Reviews, Vol. 101, Issue 9
  • DOI: 10.1021/cr940534g

Comparison among Slip-Link Simulations of Bidisperse Linear Polymer Melts
journal, November 2008

  • Masubuchi, Yuichi; Watanabe, Hiroshi; Ianniruberto, Giovanni
  • Macromolecules, Vol. 41, Issue 21
  • DOI: 10.1021/ma800954q

An Automatic Coarse-Graining and Fine-Graining Simulation Method:  Application on Polyethylene
journal, November 2006

  • Chen, Li-Jun; Qian, Hu-Jun; Lu, Zhong-Yuan
  • The Journal of Physical Chemistry B, Vol. 110, Issue 47
  • DOI: 10.1021/jp0644558

Dispersity in polymer science (IUPAC Recommendations 2009)
journal, January 2009


Rheology of polydisperse polymers: relationship between intermolecular interactions and molecular weight distribution
journal, January 1993

  • Cassagnau, P.; Montfort, J. P.; Marin, G.
  • Rheologica Acta, Vol. 32, Issue 2
  • DOI: 10.1007/BF00366679

Molecular Scale Simulation of Homopolymer Wall Slip
journal, April 2013


Rheological models based on the double reptation mixing rule: The effects of a polydisperse environment
journal, July 2000

  • Léonardi, Frédéric; Majesté, Jean-Charles; Allal, Ahmed
  • Journal of Rheology, Vol. 44, Issue 4
  • DOI: 10.1122/1.551108

The Scattering of Light and the Radial Distribution Function of High Polymer Solutions
journal, December 1948

  • Zimm, Bruno H.
  • The Journal of Chemical Physics, Vol. 16, Issue 12
  • DOI: 10.1063/1.1746738

Theoretical reconstruction of realistic dynamics of highly coarse-grained cis -1,4-polybutadiene melts
journal, March 2013

  • Lyubimov, I. Y.; Guenza, M. G.
  • The Journal of Chemical Physics, Vol. 138, Issue 12
  • DOI: 10.1063/1.4792367

Mesoscale model of polymer melt structure: Self-consistent mapping of molecular correlations to coarse-grained potentials
journal, March 2005

  • Ashbaugh, Henry S.; Patel, Harshit A.; Kumar, Sanat K.
  • The Journal of Chemical Physics, Vol. 122, Issue 10
  • DOI: 10.1063/1.1861455

Double Reptation vs. Simple Reptation in Polymer Melts
journal, March 1988


Finding the Missing Physics: Mapping Polydispersity into Lattice-Based Simulations
journal, April 2014

  • Rorrer, Nicholas A.; Dorgan, John R.
  • Macromolecules, Vol. 47, Issue 9
  • DOI: 10.1021/ma5001207

Effects of polydispersity on confined homopolymer melts: A Monte Carlo study
journal, December 2014

  • Rorrer, Nicholas A.; Dorgan, John R.
  • The Journal of Chemical Physics, Vol. 141, Issue 21
  • DOI: 10.1063/1.4902352

Works referencing / citing this record:

Precise modulation of molecular weight distribution for structural engineering
journal, January 2019

  • Tan, Rui; Zhou, Dongdong; Liu, Baolei
  • Chemical Science, Vol. 10, Issue 46
  • DOI: 10.1039/c9sc04736k

Engineering self-assembly of giant molecules in the condensed state based on molecular nanoparticles
journal, January 2019

  • Zhang, Wei; Liu, Yuchu; Huang, Jiahao
  • Soft Matter, Vol. 15, Issue 36
  • DOI: 10.1039/c9sm01502g

Unusual self-diffusion behaviors of polymer adsorbed on rough surfaces
journal, February 2019

  • Li, Jiaxiang; Zhang, Ran; Ding, Mingming
  • The Journal of Chemical Physics, Vol. 150, Issue 6
  • DOI: 10.1063/1.5085178

Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review
journal, May 2019

  • Karatrantos, Argyrios; Composto, Russell J.; Winey, Karen I.
  • Polymers, Vol. 11, Issue 5
  • DOI: 10.3390/polym11050876

Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review
text, January 2019