DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Bulk Acceleration and Thermalization at Earth’s Quasiperpendicular Bow Shock [Electron Acceleration and Thermalization at Earth's Quasi-Perpendicular Bow Shock]

Abstract

Electron heating at Earth’s quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. Here, the relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

Authors:
 [1];  [1];  [2];  [3];  [1];  [2];  [2];  [2];  [3];  [3];  [3];  [4];  [5];  [5];  [5];  [6];  [2];  [6];  [2];  [7] more »;  [2];  [2];  [3];  [3];  [8];  [9];  [10];  [11];  [1];  [5];  [12];  [1] « less
  1. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Univ. of Maryland, College Park, MD (United States)
  2. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  3. Univ. of Colorado, Boulder, CO (United States)
  4. Univ. of Bergen, Bergen (Norway)
  5. Univ. of California, Los Angeles, CA (United States)
  6. Southwest Research Institute, San Antonio, TX (United States)
  7. Denali Scientific, Healy, AK (United States)
  8. Univ. de Toulouse (UPS), Toulouse (France)
  9. CNRS/Ecole Polytechnique/Sorbonne Univ./Univ. Paris Sud/Observatoire de Paris, Palaiseau Cedex (France)
  10. Swedish Institute of Space Physics, Uppsala (Sweden)
  11. KTH Royal Institute of Technology, Stockholm (Sweden)
  12. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1477703
Alternate Identifier(s):
OSTI ID: 1439741
Report Number(s):
LA-UR-18-26991
Journal ID: ISSN 0031-9007; PRLTAO
Grant/Contract Number:  
AC52-06NA25396; SC0016278
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 22; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Chen, L. -J., Wang, S., Wilson, III, L. B., Schwartz, S., Bessho, N., Moore, T., Gershman, D., Giles, B., Malaspina, D., Wilder, F. D., Ergun, R. E., Hesse, M., Lai, H., Russell, C., Strangeway, R., Torbert, R. B., -Vinas, A. F., Burch, J., Lee, S., Pollock, C., Dorelli, J., Paterson, W., Ahmadi, N., Goodrich, K., Lavraud, B., Le Contel, O., Khotyaintsev, Yu. V., Lindqvist, P. -A., Boardsen, S., Wei, H., Le, A., and Avanov, L. Electron Bulk Acceleration and Thermalization at Earth’s Quasiperpendicular Bow Shock [Electron Acceleration and Thermalization at Earth's Quasi-Perpendicular Bow Shock]. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.225101.
Chen, L. -J., Wang, S., Wilson, III, L. B., Schwartz, S., Bessho, N., Moore, T., Gershman, D., Giles, B., Malaspina, D., Wilder, F. D., Ergun, R. E., Hesse, M., Lai, H., Russell, C., Strangeway, R., Torbert, R. B., -Vinas, A. F., Burch, J., Lee, S., Pollock, C., Dorelli, J., Paterson, W., Ahmadi, N., Goodrich, K., Lavraud, B., Le Contel, O., Khotyaintsev, Yu. V., Lindqvist, P. -A., Boardsen, S., Wei, H., Le, A., & Avanov, L. Electron Bulk Acceleration and Thermalization at Earth’s Quasiperpendicular Bow Shock [Electron Acceleration and Thermalization at Earth's Quasi-Perpendicular Bow Shock]. United States. https://doi.org/10.1103/PhysRevLett.120.225101
Chen, L. -J., Wang, S., Wilson, III, L. B., Schwartz, S., Bessho, N., Moore, T., Gershman, D., Giles, B., Malaspina, D., Wilder, F. D., Ergun, R. E., Hesse, M., Lai, H., Russell, C., Strangeway, R., Torbert, R. B., -Vinas, A. F., Burch, J., Lee, S., Pollock, C., Dorelli, J., Paterson, W., Ahmadi, N., Goodrich, K., Lavraud, B., Le Contel, O., Khotyaintsev, Yu. V., Lindqvist, P. -A., Boardsen, S., Wei, H., Le, A., and Avanov, L. Thu . "Electron Bulk Acceleration and Thermalization at Earth’s Quasiperpendicular Bow Shock [Electron Acceleration and Thermalization at Earth's Quasi-Perpendicular Bow Shock]". United States. https://doi.org/10.1103/PhysRevLett.120.225101. https://www.osti.gov/servlets/purl/1477703.
@article{osti_1477703,
title = {Electron Bulk Acceleration and Thermalization at Earth’s Quasiperpendicular Bow Shock [Electron Acceleration and Thermalization at Earth's Quasi-Perpendicular Bow Shock]},
author = {Chen, L. -J. and Wang, S. and Wilson, III, L. B. and Schwartz, S. and Bessho, N. and Moore, T. and Gershman, D. and Giles, B. and Malaspina, D. and Wilder, F. D. and Ergun, R. E. and Hesse, M. and Lai, H. and Russell, C. and Strangeway, R. and Torbert, R. B. and -Vinas, A. F. and Burch, J. and Lee, S. and Pollock, C. and Dorelli, J. and Paterson, W. and Ahmadi, N. and Goodrich, K. and Lavraud, B. and Le Contel, O. and Khotyaintsev, Yu. V. and Lindqvist, P. -A. and Boardsen, S. and Wei, H. and Le, A. and Avanov, L.},
abstractNote = {Electron heating at Earth’s quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. Here, the relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.},
doi = {10.1103/PhysRevLett.120.225101},
journal = {Physical Review Letters},
number = 22,
volume = 120,
place = {United States},
year = {Thu May 31 00:00:00 EDT 2018},
month = {Thu May 31 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Overview of Earth’s bow shock encountered by the MMS4 spacecraft. (a) The density $N$. (b) The magnetic field |B| and the angle between the instantaneous B and the shock normal n. (c) The bulk ion velocity |V$i$|. (d) The electron temperature parallel ( $T$ ) and perpendicular (more » $T$ ) to B. The ion (e) and electron (f) phase space density as a function of energy (W) and time. (g) The electric field component along n ($E$$n$), averaged to the same cadence as the electron measurements. The magenta arrow marks the time to be zoomed in.« less

Save / Share:

Works referenced in this record:

Electron heating and the potential jump across fast mode shocks
journal, January 1988

  • Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 93, Issue A11
  • DOI: 10.1029/JA093iA11p12923

A study of the dispersion of the electron distribution in the presence of E and B gradients: Application to electron heating at quasi-perpendicular shocks
journal, February 1998

  • Balikhin, M.; Krasnosel'skikh, V. V.; Woolliscroft, L. J. C.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A2
  • DOI: 10.1029/97JA02463

Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
journal, July 2017


A review of the physics of electron heating at collisionless shocks
journal, January 1995


Non-adiabatic electron behaviour due to short-scale electric field structures at collisionless shock waves
journal, January 2013


The Dynamic Quasiperpendicular Shock: Cluster Discoveries
journal, March 2013


Electron velocity distributions near the Earth's bow shock
journal, January 1983

  • Feldman, W. C.; Anderson, R. C.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 88, Issue A1
  • DOI: 10.1029/JA088iA01p00096

Instability, Turbulence, and Conductivity in Current-Carrying Plasma
journal, July 1958


Comment on “Electron demagnetization and heating in quasi-perpendicular shocks” by Mozer and Sundkvist
journal, March 2014

  • Schwartz, Steven J.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 3
  • DOI: 10.1002/2013JA019624

Demagnetization of transmitted electrons through a quasi-perpendicular collisionless shock
journal, January 2003


Electron Temperature Gradient Scale at Collisionless Shocks
journal, November 2011


The Search-Coil Magnetometer for MMS
journal, September 2014


Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection
journal, July 2013

  • Ghavamian, Parviz; Schwartz, Steven J.; Mitchell, Jeremy
  • Space Science Reviews, Vol. 178, Issue 2-4
  • DOI: 10.1007/s11214-013-9999-0

The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products
journal, November 2014


The Magnetospheric Multiscale Magnetometers
journal, August 2014


Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism
journal, December 2017

  • Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh
  • The Astrophysical Journal, Vol. 851, Issue 2
  • DOI: 10.3847/1538-4357/aa9b82

Fast Plasma Investigation for Magnetospheric Multiscale
journal, March 2016


Stability of electron distributions within the Earth's bow shock
journal, January 1983

  • Thomsen, M. F.; Barr, H. C.; Gary, S. Peter
  • Journal of Geophysical Research, Vol. 88, Issue A4
  • DOI: 10.1029/JA088iA04p03035

Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks
journal, July 2012


Electron dynamics and cross-shock potential at the quasi-perpendicular Earth's bow shock: ELECTRON DYNAMICS AND SHOCK POTENTIAL
journal, September 2007

  • Lefebvre, Bertrand; Schwartz, Steven J.; Fazakerley, Andrew F.
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A9
  • DOI: 10.1029/2007JA012277

New mechanism for electron heating in shocks
journal, March 1993


On microinstabilities in the foot of high Mach number perpendicular shocks
journal, January 2006

  • Matsukiyo, S.; Scholer, M.
  • Journal of Geophysical Research, Vol. 111, Issue A6
  • DOI: 10.1029/2005JA011409

Electron-scale measurements of magnetic reconnection in space
journal, May 2016


The resolved layer of a collisionless, high β, supercritical, quasi-perpendicular shock wave, 2. Dissipative fluid electrodynamics
journal, January 1986

  • Scudder, J. D.; Mangeney, A.; Lacombe, C.
  • Journal of Geophysical Research, Vol. 91, Issue A10
  • DOI: 10.1029/JA091iA10p11053

Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail
journal, February 1996

  • Omura, Y.; Matsumoto, H.; Miyake, T.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A2
  • DOI: 10.1029/95JA03145

Quantified energy dissipation rates in the terrestrial bow shock: 2. Waves and dissipation: WILSON ET AL.
journal, August 2014

  • Wilson, L. B.; Sibeck, D. G.; Breneman, A. W.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 8
  • DOI: 10.1002/2014JA019930

The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves
journal, January 1984


Small‐Scale Structure of the SN 1006 Shock with Chandra Observations
journal, June 2003

  • Bamba, Aya; Yamazaki, Ryo; Ueno, Masaru
  • The Astrophysical Journal, Vol. 589, Issue 2
  • DOI: 10.1086/374687

Electron demagnetization and heating in quasi-perpendicular shocks: ELECTRON DEMAGNETIZATION IN SHOCKS
journal, September 2013

  • Mozer, F. S.; Sundkvist, D.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 9
  • DOI: 10.1002/jgra.50534

Dynamics of energetic electrons in nonstationary quasi-perpendicular shocks: ENERGETIC ELECTRONS IN NONSTATIONARY SHOCKS
journal, November 2012

  • Matsukiyo, Shuichi; Scholer, Manfred
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A11
  • DOI: 10.1029/2012JA017986

Large-amplitude electrostatic waves associated with magnetic ramp substructure at Earth's bow shock
journal, January 2006

  • Hull, A. J.; Larson, D. E.; Wilber, M.
  • Geophysical Research Letters, Vol. 33, Issue 15
  • DOI: 10.1029/2005GL025564

Revisiting the structure of low-Mach number, low-beta, quasi-perpendicular shocks: SHOCK STRUCTURE
journal, September 2017

  • Wilson III, L. B.; Koval, A.; Szabo, A.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 9
  • DOI: 10.1002/2017JA024352

Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes
journal, August 1998

  • Bale, S. D.; Kellogg, P. J.; Larsen, D. E.
  • Geophysical Research Letters, Vol. 25, Issue 15
  • DOI: 10.1029/98GL02111

The Axial Double Probe and Fields Signal Processing for the MMS Mission
journal, December 2014


Magneto-Hydrodynamic Shocks
journal, November 1950


Strong electron heating at the Earth's bow shock
journal, January 1987

  • Thomsen, M. F.; Mellott, M. M.; Stansberry, J. A.
  • Journal of Geophysical Research, Vol. 92, Issue A9
  • DOI: 10.1029/JA092iA09p10119

Particle simulation of plasma response to an applied electric field parallel to magnetic field lines: PLASMA RESPONSE TO INDUCTION ELECTRIC FIELD
journal, May 2003

  • Omura, Y.; Heikkila, W. J.; Umeda, T.
  • Journal of Geophysical Research: Space Physics, Vol. 108, Issue A5
  • DOI: 10.1029/2002JA009573

The Spin-Plane Double Probe Electric Field Instrument for MMS
journal, November 2014


Vela 4 plasma observations near the Earth’s bow shock
journal, March 1970

  • Montgomery, Michael D.; Asbridge, J. R.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 75, Issue 7
  • DOI: 10.1029/JA075i007p01217

Electron heating and phase space signatures at supercritical, fast mode shocks
journal, August 2001

  • Hull, A. J.; Scudder, J. D.; Larson, D. E.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A8
  • DOI: 10.1029/2001JA900001

Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks
journal, July 2007

  • Scholer, Manfred; Burgess, David
  • Physics of Plasmas, Vol. 14, Issue 7
  • DOI: 10.1063/1.2748391

Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non-specularly reflected-gyrating ions
journal, January 1983

  • Sckopke, N.; Paschmann, G.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 88, Issue A8
  • DOI: 10.1029/JA088iA08p06121

Works referencing / citing this record:

Linear unstable whistler eigenmodes excited by a finite electron beam
journal, August 2019

  • An, Xin; Bortnik, Jacob; Van Compernolle, Bart
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5097837

Decomposition of plasma kinetic entropy into position and velocity space and the use of kinetic entropy in particle-in-cell simulations
journal, August 2019

  • Liang, Haoming; Cassak, Paul A.; Servidio, Sergio
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5098888

Linear unstable whistler eigenmodes excited by a finite electron beam
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.