DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compatibility issues between electrodes and electrolytes in solid-state batteries

Abstract

Remarkable success has been achieved in the discovery of ceramic alkali superionic conductors as electrolytes in solid-state batteries; however, obtaining a stable interface between these electrolytes and electrodes is difficult. Only limited studies on the compatibility between electrodes and solid electrolytes have been reported, partially because of the need for expensive instrumentation and special cell designs. Without simple yet powerful tools, these compatibility issues cannot be systematically investigated, thus hindering the generalization of design rules for the integration of solid-state battery components. Herein, we present a methodology that combines density functional theory calculations and simple experimental techniques such as X-ray diffraction, simultaneous differential scanning calorimetry and thermal gravimetric analysis, and electrochemistry to efficiently screen the compatibility of numerous electrode/electrolyte pairs. We systemically distinguish between the electrochemical stability of the solid-state conductor, which is relevant wherever the electrolyte contacts an electron pathway, and the electrochemical stability of the electrode/electrolyte interfaces. For the solid electrolyte, we are able to computationally derive an absolute thermodynamic stability voltage window, which is small for Na3PS4 and Na3PSe4, and a larger voltage window which can be kinetically stabilized. The experimental stability, when measured with reliable techniques, falls between these thermodynamic and kinetic limits. Employing a Namore » solid-state system as an example, we demonstrate the efficiency of our method by finding the most stable system (NaCrO2|Na3PS4|Na–Sn) within a selected chemical space (more than 20 different combinations of electrodes and electrolytes). Important selection criteria for the cathode, electrolyte, and anode in solid-state batteries are also derived from this study. The current method not only provides an essential guide for integrating all-solid-state battery components but can also significantly accelerate the expansion of the electrolyte/electrode compatibility data.« less

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [3]; ORCiD logo [3];  [3];  [4]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  4. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); Samsung Advanced Inst. of Technology (Korea, Republic of)
OSTI Identifier:
1475003
Grant/Contract Number:  
AC02-05CH11231; ACI-1053575
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 10; Journal Issue: 5; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Tian, Yaosen, Shi, Tan, Richards, William D., Li, Juchuan, Kim, Jae Chul, Bo, Shou-Hang, and Ceder, Gerbrand. Compatibility issues between electrodes and electrolytes in solid-state batteries. United States: N. p., 2017. Web. doi:10.1039/c7ee00534b.
Tian, Yaosen, Shi, Tan, Richards, William D., Li, Juchuan, Kim, Jae Chul, Bo, Shou-Hang, & Ceder, Gerbrand. Compatibility issues between electrodes and electrolytes in solid-state batteries. United States. https://doi.org/10.1039/c7ee00534b
Tian, Yaosen, Shi, Tan, Richards, William D., Li, Juchuan, Kim, Jae Chul, Bo, Shou-Hang, and Ceder, Gerbrand. Wed . "Compatibility issues between electrodes and electrolytes in solid-state batteries". United States. https://doi.org/10.1039/c7ee00534b. https://www.osti.gov/servlets/purl/1475003.
@article{osti_1475003,
title = {Compatibility issues between electrodes and electrolytes in solid-state batteries},
author = {Tian, Yaosen and Shi, Tan and Richards, William D. and Li, Juchuan and Kim, Jae Chul and Bo, Shou-Hang and Ceder, Gerbrand},
abstractNote = {Remarkable success has been achieved in the discovery of ceramic alkali superionic conductors as electrolytes in solid-state batteries; however, obtaining a stable interface between these electrolytes and electrodes is difficult. Only limited studies on the compatibility between electrodes and solid electrolytes have been reported, partially because of the need for expensive instrumentation and special cell designs. Without simple yet powerful tools, these compatibility issues cannot be systematically investigated, thus hindering the generalization of design rules for the integration of solid-state battery components. Herein, we present a methodology that combines density functional theory calculations and simple experimental techniques such as X-ray diffraction, simultaneous differential scanning calorimetry and thermal gravimetric analysis, and electrochemistry to efficiently screen the compatibility of numerous electrode/electrolyte pairs. We systemically distinguish between the electrochemical stability of the solid-state conductor, which is relevant wherever the electrolyte contacts an electron pathway, and the electrochemical stability of the electrode/electrolyte interfaces. For the solid electrolyte, we are able to computationally derive an absolute thermodynamic stability voltage window, which is small for Na3PS4 and Na3PSe4, and a larger voltage window which can be kinetically stabilized. The experimental stability, when measured with reliable techniques, falls between these thermodynamic and kinetic limits. Employing a Na solid-state system as an example, we demonstrate the efficiency of our method by finding the most stable system (NaCrO2|Na3PS4|Na–Sn) within a selected chemical space (more than 20 different combinations of electrodes and electrolytes). Important selection criteria for the cathode, electrolyte, and anode in solid-state batteries are also derived from this study. The current method not only provides an essential guide for integrating all-solid-state battery components but can also significantly accelerate the expansion of the electrolyte/electrode compatibility data.},
doi = {10.1039/c7ee00534b},
journal = {Energy & Environmental Science},
number = 5,
volume = 10,
place = {United States},
year = {Wed Apr 26 00:00:00 EDT 2017},
month = {Wed Apr 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 244 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries
journal, January 2012

  • Nagao, Motohiro; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Journal of Materials Chemistry, Vol. 22, Issue 19
  • DOI: 10.1039/c2jm16802b

Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application
journal, August 2012


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Role of Na + Interstitials and Dopants in Enhancing the Na + Conductivity of the Cubic Na 3 PS 4 Superionic Conductor
journal, December 2015


Electrochemical investigation of the P2–NaxCoO2 phase diagram
journal, December 2010

  • Berthelot, R.; Carlier, D.; Delmas, C.
  • Nature Materials, Vol. 10, Issue 1
  • DOI: 10.1038/nmat2920

Recent developments in electrode materials for sodium-ion batteries
journal, January 2015

  • Wang, Luyuan Paul; Yu, Linghui; Wang, Xin
  • Journal of Materials Chemistry A, Vol. 3, Issue 18
  • DOI: 10.1039/C4TA06467D

Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes
journal, April 2009


Projector augmented-wave method
journal, December 1994


High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4
journal, July 2014


Na 3 SbS 4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
journal, July 2016

  • Banerjee, Abhik; Park, Kern Ho; Heo, Jongwook W.
  • Angewandte Chemie, Vol. 128, Issue 33
  • DOI: 10.1002/ange.201604158

A review of lithium and non-lithium based solid state batteries
journal, May 2015


Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium–Sulfur as a Positive Electrode
journal, February 2012

  • Abouimrane, Ali; Dambournet, Damien; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 134, Issue 10
  • DOI: 10.1021/ja211766q

Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes
journal, January 2011

  • Kitaura, Hirokazu; Hayashi, Akitoshi; Ohtomo, Takamasa
  • J. Mater. Chem., Vol. 21, Issue 1
  • DOI: 10.1039/C0JM01090A

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes
journal, July 2013


Data Mined Ionic Substitutions for the Discovery of New Compounds
journal, January 2011

  • Hautier, Geoffroy; Fischer, Chris; Ehrlacher, Virginie
  • Inorganic Chemistry, Vol. 50, Issue 2
  • DOI: 10.1021/ic102031h

Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor
journal, September 2016

  • Chu, Iek-Heng; Kompella, Christopher S.; Nguyen, Han
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33733

Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries
journal, January 2012


All-solid-state Lithium Secondary Batteries Using Li 2 S–P 2 S 5 Solid Electrolytes and LiFePO 4 Electrode Particles with Amorphous Surface Layer
journal, March 2012

  • Sakuda, Atsushi; Kitaura, Hirokazu; Hayashi, Akitoshi
  • Chemistry Letters, Vol. 41, Issue 3
  • DOI: 10.1246/cl.2012.260

Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
journal, May 2012


Challenges for Na-ion Negative Electrodes
journal, January 2011

  • Chevrier, V. L.; Ceder, G.
  • Journal of The Electrochemical Society, Vol. 158, Issue 9
  • DOI: 10.1149/1.3607983

Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
journal, January 2011

  • Ong, Shyue Ping; Chevrier, Vincent L.; Hautier, Geoffroy
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01782a

Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4
journal, January 2014

  • Sahu, Gayatri; Lin, Zhan; Li, Juchuan
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43357A

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Electrical and mechanical properties of hot-pressed versus sintered LiTi2(PO4)3
journal, June 2009


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Predicting and Extending the Lifetime of Li-Ion Batteries
journal, January 2013

  • Burns, J. C.; Kassam, Adil; Sinha, N. N.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.060309jes

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

Inorganic solid Li ion conductors: An overview
journal, June 2009


First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Powerful oxidizing agents for the oxidative deintercalation of lithium from transition-metal oxides
journal, August 1989

  • Wizansky, Abigail R.; Rauch, Paul E.; Disalvo, Francis J.
  • Journal of Solid State Chemistry, Vol. 81, Issue 2
  • DOI: 10.1016/0022-4596(89)90007-8

Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets
journal, May 2015


Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3 PSe 4
journal, December 2015


New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission
journal, May 2015


First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Vacancy-Contained Tetragonal Na 3 SbS 4 Superionic Conductor
journal, April 2016


Chemically desodiated thiochromites as cathode materials in secondary lithium cells
journal, May 1989


Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries
journal, January 2012

  • Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1843

High-Capacity Anode Materials for Sodium-Ion Batteries
journal, August 2014

  • Kim, Youngjin; Ha, Kwang-Ho; Oh, Seung M.
  • Chemistry - A European Journal, Vol. 20, Issue 38
  • DOI: 10.1002/chem.201402511

Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

All oxide solid-state lithium-ion cells
journal, October 1997


Interfacial modification for high-power solid-state lithium batteries
journal, September 2008


Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2
journal, March 2010


Electrochemical Properties of Monoclinic NaNiO 2
journal, November 2012

  • Vassilaras, Plousia; Ma, Xiaohua; Li, Xin
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.023302jes

Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System
journal, January 2001

  • Kanno, Ryoji; Murayama, Masahiro
  • Journal of The Electrochemical Society, Vol. 148, Issue 7, p. A742-A746
  • DOI: 10.1149/1.1379028

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Electrochemical Properties of Monoclinic NaMnO2
journal, January 2011

  • Ma, Xiaohua; Chen, Hailong; Ceder, Gerbrand
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.035112jes

Synthesis of New Lithium Ionic Conductor Thio-LISICON—Lithium Silicon Sulfides System
journal, October 2002


Redox shuttles for safer lithium-ion batteries
journal, October 2009


The Na-Se (Sodium-Selenium) System
journal, April 1997

  • Sangster, J.; Pelton, A. D.
  • Journal of Phase Equilibria, Vol. 18, Issue 2
  • DOI: 10.1007/BF02665704

All-solid-state lithium battery with LiBH4 solid electrolyte
journal, March 2013


Design and synthesis of the superionic conductor Na10SnP2S12
journal, March 2016

  • Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11009

Structure of hazelwoodite (Ni 3 S 2 )
journal, May 1980

  • Parise, J. B.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 36, Issue 5
  • DOI: 10.1107/S0567740880005523

Interfacial Observation between LiCoO 2 Electrode and Li 2 S−P 2 S 5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
journal, February 2010

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901819c

An all-solid state NASICON sodium battery operating at 200 °C
journal, February 2014


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016

  • Wang, Hui; Chen, Yan; Hood, Zachary D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201601546

Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell
journal, July 2012


A Battery Made from a Single Material
journal, April 2015


Research on sodium sulfur battery for energy storage
journal, September 2008


Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

A novel all-solid-state thin-film-type lithium-ion battery with in situ prepared positive and negative electrode materials
journal, February 2009


Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries
journal, March 2013

  • Tatsumisago, Masahiro; Nagao, Motohiro; Hayashi, Akitoshi
  • Journal of Asian Ceramic Societies, Vol. 1, Issue 1
  • DOI: 10.1016/j.jascer.2013.03.005

Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries
journal, August 2016


Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Analysis of Charged State Stability for Monoclinic LiMnBO 3 Cathode
journal, July 2014

  • Kim, Jae Chul; Li, Xin; Moore, Charles J.
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm5014174

Formation enthalpies by mixing GGA and GGA + U calculations
journal, July 2011


All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes
journal, August 2003

  • Hayashi, Akitoshi; Ohtomo, Takamasa; Mizuno, Fuminori
  • Electrochemistry Communications, Vol. 5, Issue 8, p. 701-705
  • DOI: 10.1016/S1388-2481(03)00167-X

Structural and Na-ion conduction characteristics of Na 3 PS x Se 4−x
journal, January 2016

  • Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand
  • Journal of Materials Chemistry A, Vol. 4, Issue 23
  • DOI: 10.1039/C6TA03027K

Studies on the Chemistry of Halogen and of Polyhalides. XIII. Voltammetry of Iodine Species in Acetonitrile
journal, March 1958

  • Popov, Alexander I.; Geske, David H.
  • Journal of the American Chemical Society, Vol. 80, Issue 6
  • DOI: 10.1021/ja01539a018

LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries
journal, July 2007


Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
journal, October 2013

  • Hartmann, Pascal; Leichtweiss, Thomas; Busche, Martin R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 41
  • DOI: 10.1021/jp4051275

Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12
journal, April 2006


High ionic conductivity in lithium lanthanum titanate
journal, June 1993

  • Inaguma, Yoshiyuki; Liquan, Chen; Itoh, Mitsuru
  • Solid State Communications, Vol. 86, Issue 10, p. 689-693
  • DOI: 10.1016/0038-1098(93)90841-A

Interface Stability in Solid-State Batteries
journal, December 2015


Electrochemical and Thermal Properties of α-NaFeO 2 Cathode for Na-Ion Batteries
journal, January 2013

  • Zhao, Jie; Zhao, Liwei; Dimov, Nikolay
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.007305jes

Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte
journal, July 2011


Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


Refinement of the crystal structure of Co 9 S 8
journal, December 1962


Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries
journal, October 2006


Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na 3 PS 4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries
journal, October 2016

  • Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b10119

A high-conduction Ge substituted Li 3 AsS 4 solid electrolyte with exceptional low activation energy
journal, January 2014

  • Sahu, Gayatri; Rangasamy, Ezhiylmurugan; Li, Juchuan
  • J. Mater. Chem. A, Vol. 2, Issue 27
  • DOI: 10.1039/C4TA01243G

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Works referencing / citing this record:

Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes
journal, October 2018


Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells
journal, January 2020


Fabrication of Sub-Micrometer-Thick Solid Electrolyte Membranes of β-Li 3 PS 4 via Tiled Assembly of Nanoscale, Plate-Like Building Blocks
journal, May 2018

  • Hood, Zachary D.; Wang, Hui; Pandian, Amaresh Samuthira
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800014

Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries
journal, April 2018

  • Park, Kern Ho; Bai, Qiang; Kim, Dong Hyeon
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201800035

Ameliorating the Interfacial Problems of Cathode and Solid‐State Electrolytes by Interface Modification of Functional Polymers
journal, July 2018

  • Wang, Li‐Ping; Zhang, Xu‐Dong; Wang, Tai‐Shan
  • Advanced Energy Materials, Vol. 8, Issue 24
  • DOI: 10.1002/aenm.201801528

A High‐Throughput Search for Functionally Stable Interfaces in Sulfide Solid‐State Lithium Ion Conductors
journal, April 2019

  • Fitzhugh, William; Wu, Fan; Ye, Luhan
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201900807

Exploiting Lithium‐Depleted Cathode Materials for Solid‐State Li Metal Batteries
journal, June 2019

  • Wang, Li‐Ping; Wang, Tai‐Shan; Yin, Ya‐Xia
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201901335

Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries
journal, February 2018


First Principle Material Genome Approach for All Solid‐State Batteries
journal, September 2019

  • Xu, Hongjie; Yu, Yuran; Wang, Zhuo
  • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 2, Issue 4
  • DOI: 10.1002/eem2.12053

Strain‐Stabilized Ceramic‐Sulfide Electrolytes
journal, July 2019


High magnesium mobility in ternary spinel chalcogenides
journal, November 2017

  • Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01772-1

Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery
journal, August 2018


Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes
journal, January 2020

  • Schwietert, Tammo K.; Arszelewska, Violetta A.; Wang, Chao
  • Nature Materials, Vol. 19, Issue 4
  • DOI: 10.1038/s41563-019-0576-0

Understanding interface stability in solid-state batteries
journal, December 2019


Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries
journal, January 2019

  • Yu, Yuran; Wang, Zhuo; Shao, Guosheng
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta02166c

The critical role of oxygen-evolution kinetics in the electrochemical stability of oxide superionic conductors
journal, January 2019

  • Wang, Tiantian; Qiu, Wujie; Feng, Qi
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04841c

Theoretical formulation of Na 3 AO 4 X (A = S/Se, X = F/Cl) as high-performance solid electrolytes for all-solid-state sodium batteries
journal, January 2019

  • Yu, Yuran; Wang, Zhuo; Shao, Guosheng
  • Journal of Materials Chemistry A, Vol. 7, Issue 38
  • DOI: 10.1039/c9ta08584j

Electrochemically Stable Coating Materials for Li, Na, and Mg Metal Anodes in Durable High Energy Batteries
journal, January 2017

  • Snydacker, David H.; Hegde, Vinay I.; Wolverton, C.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0371714jes

Surface Modification of the LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode by a Protective Interface Layer of Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3
journal, January 2019

  • Kobylianska, S.; Demchuk, D.; Khomenko, V.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0701908jes

Predictive modeling and design rules for solid electrolytes
journal, October 2018

  • Ceder, Gerbrand; Ong, Shyue Ping; Wang, Yan
  • MRS Bulletin, Vol. 43, Issue 10
  • DOI: 10.1557/mrs.2018.210

Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries
journal, February 2018

  • Chi, Xiaowei; Liang, Yanliang; Hao, Fang
  • Angewandte Chemie International Edition, Vol. 57, Issue 10
  • DOI: 10.1002/anie.201712895