DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction

Abstract

Here, localized orbital bonding analysis (LOBA) was employed to probe the oxidation state in cobalt-bis(diaryldithiolene)-catalyzed proton reduction in nonaqueous media. LOBA calculations provide both the oxidation state and chemically intuitive views of bonding in cobalt-bis(diaryldithiolene) species and therefore allow characterization of the role of the redox non-innocent dithiolene ligand. LOBA results show that the reduction of the monoanion species [1Br]- is metal-centered and gives a cobalt(II) ion species, [1Br]2-, coordinated to two dianionic ene-1,2-dithiolates. This electronic configuration is in agreement with the solution magnetic moment observed for the analogous salt [1F]2-eff= 2.39 μB). Protonation of [1Br]2- yields the cobalt(III)-hydride [1Br(CoH)]- species in which the Co-H bond is computed to be highly covalent (Löwdin populations close to 0.50 on cobalt and hydrogen atoms). Further reduction of [1Br(CoH)]- forms a more basic cobalt(II)-H intermediate [1Br(CoH)]2- (S = 0) from which protonation at sulfur gives a S-H bond syn to the Co-H bond. Formation of a cobalt-dihydrogen [1Br(CoH2)]- intermediate is calculated to occur via a homocoupling (H+ H→ H2) step with a free energy of activation of 5.9 kcal/mol in solution (via C-PCM approach).

Authors:
 [1];  [1];  [2];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis (JCAP) and Materials Sciences Division
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1474911
Grant/Contract Number:  
AC02-05CH11231; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Related Information: © 2015 American Chemical Society.; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Panetier, Julien A., Letko, Christopher S., Tilley, T. Don, and Head-Gordon, Martin. Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction. United States: N. p., 2015. Web. doi:10.1021/acs.jctc.5b00968.
Panetier, Julien A., Letko, Christopher S., Tilley, T. Don, & Head-Gordon, Martin. Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction. United States. https://doi.org/10.1021/acs.jctc.5b00968
Panetier, Julien A., Letko, Christopher S., Tilley, T. Don, and Head-Gordon, Martin. Mon . "Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction". United States. https://doi.org/10.1021/acs.jctc.5b00968. https://www.osti.gov/servlets/purl/1474911.
@article{osti_1474911,
title = {Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction},
author = {Panetier, Julien A. and Letko, Christopher S. and Tilley, T. Don and Head-Gordon, Martin},
abstractNote = {Here, localized orbital bonding analysis (LOBA) was employed to probe the oxidation state in cobalt-bis(diaryldithiolene)-catalyzed proton reduction in nonaqueous media. LOBA calculations provide both the oxidation state and chemically intuitive views of bonding in cobalt-bis(diaryldithiolene) species and therefore allow characterization of the role of the redox non-innocent dithiolene ligand. LOBA results show that the reduction of the monoanion species [1Br]- is metal-centered and gives a cobalt(II) ion species, [1Br]2-, coordinated to two dianionic ene-1,2-dithiolates. This electronic configuration is in agreement with the solution magnetic moment observed for the analogous salt [1F]2-(μeff= 2.39 μB). Protonation of [1Br]2- yields the cobalt(III)-hydride [1Br(CoH)]- species in which the Co-H bond is computed to be highly covalent (Löwdin populations close to 0.50 on cobalt and hydrogen atoms). Further reduction of [1Br(CoH)]- forms a more basic cobalt(II)-H intermediate [1Br(CoH)]2- (S = 0) from which protonation at sulfur gives a S-H bond syn to the Co-H bond. Formation of a cobalt-dihydrogen [1Br(CoH2)]- intermediate is calculated to occur via a homocoupling (H•+ H•→ H2) step with a free energy of activation of 5.9 kcal/mol in solution (via C-PCM approach).},
doi = {10.1021/acs.jctc.5b00968},
journal = {Journal of Chemical Theory and Computation},
number = 1,
volume = 12,
place = {United States},
year = {Mon Nov 23 00:00:00 EST 2015},
month = {Mon Nov 23 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Chemical approaches to artificial photosynthesis
journal, May 1989


Chemical Approaches to Artificial Photosynthesis. 2
journal, October 2005

  • Alstrum-Acevedo, James H.; Brennaman, M. Kyle; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 44, Issue 20
  • DOI: 10.1021/ic050904r

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Solar Fuels via Artificial Photosynthesis
journal, December 2009

  • Gust, Devens; Moore, Thomas A.; Moore, Ana L.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900209b

Powering the planet with solar fuel
journal, April 2009


Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production
journal, March 2011


Making solar fuels by artificial photosynthesis
journal, March 2011

  • Song, Wenjing; Chen, Zuofeng; Brennaman, M. Kyle
  • Pure and Applied Chemistry, Vol. 83, Issue 4
  • DOI: 10.1351/PAC-CON-10-11-09

Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells
journal, August 2011


Chemical approaches to artificial photosynthesis
journal, September 2012

  • Concepcion, J. J.; House, R. L.; Papanikolas, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1212254109

Realizing artificial photosynthesis
journal, January 2012

  • Gust, Devens; Moore, Thomas A.; Moore, Ana L.
  • Faraday Discuss., Vol. 155
  • DOI: 10.1039/C1FD00110H

Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move
journal, August 2013

  • Joya, Khurram Saleem; Joya, Yasir F.; Ocakoglu, Kasim
  • Angewandte Chemie International Edition, Vol. 52, Issue 40
  • DOI: 10.1002/anie.201300136

From natural to artificial photosynthesis
journal, April 2013

  • Barber, James; Tran, Phong D.
  • Journal of The Royal Society Interface, Vol. 10, Issue 81
  • DOI: 10.1098/rsif.2012.0984

Semiconductor Nanowires for Artificial Photosynthesis
journal, September 2013

  • Liu, Chong; Dasgupta, Neil P.; Yang, Peidong
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4023198

Molecular artificial photosynthesis
journal, January 2014

  • Berardi, Serena; Drouet, Samuel; Francàs, Laia
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60405E

Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation
journal, October 2014

  • Kärkäs, Markus D.; Verho, Oscar; Johnston, Eric V.
  • Chemical Reviews, Vol. 114, Issue 24
  • DOI: 10.1021/cr400572f

Artificial Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation
journal, August 2013

  • Kärkäs, Markus D.; Johnston, Eric V.; Verho, Oscar
  • Accounts of Chemical Research, Vol. 47, Issue 1
  • DOI: 10.1021/ar400076j

Artificial Photosynthesis for Sustainable Fuel and Chemical Production
journal, January 2015

  • Kim, Dohyung; Sakimoto, Kelsey K.; Hong, Dachao
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201409116

Hydrogen Production by Molecular Photocatalysis
journal, October 2007

  • Esswein, Arthur J.; Nocera, Daniel G.
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050193e

Photocatalytic hydrogen production
journal, January 2011

  • Teets, Thomas S.; Nocera, Daniel G.
  • Chemical Communications, Vol. 47, Issue 33
  • DOI: 10.1039/c1cc12390d

Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts
journal, January 2011

  • Fukuzumi, Shunichi; Yamada, Yusuke; Suenobu, Tomoyoshi
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01551f

Molecular systems for light driven hydrogen production
journal, January 2012

  • Eckenhoff, William T.; Eisenberg, Richard
  • Dalton Transactions, Vol. 41, Issue 42
  • DOI: 10.1039/c2dt30823a

Fuel from Water: The Photochemical Generation of Hydrogen from Water
journal, June 2014

  • Han, Zhiji; Eisenberg, Richard
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5001605

Cobalt-catalyzed evolution of molecular hydrogen
journal, July 1986

  • Connolly, Philip; Espenson, James H.
  • Inorganic Chemistry, Vol. 25, Issue 16
  • DOI: 10.1021/ic00236a006

Homogeneous Catalysis of Electrochemical Hydrogen Evolution by Iron(0) Porphyrins
journal, January 1996

  • Bhugun, Iqbal; Lexa, Doris; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 118, Issue 16
  • DOI: 10.1021/ja954326x

Proton Electroreduction Catalyzed by Cobaloximes:  Functional Models for Hydrogenases
journal, June 2005

  • Razavet, Mathieu; Artero, Vincent; Fontecave, Marc
  • Inorganic Chemistry, Vol. 44, Issue 13
  • DOI: 10.1021/ic050167z

Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes
journal, January 2005

  • Hu, Xile; Cossairt, Brandi M.; Brunschwig, Bruce S.
  • Chemical Communications, Issue 37
  • DOI: 10.1039/b509188h

Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes
journal, July 2007

  • Hu, Xile; Brunschwig, Bruce S.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 129, Issue 29
  • DOI: 10.1021/ja067876b

Hydrogen Evolution Catalyzed by Cobaloximes
journal, December 2009

  • Dempsey, Jillian L.; Brunschwig, Bruce S.; Winkler, Jay R.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900253e

Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation
journal, December 2009

  • Rakowski Dubois, M.; Dubois, Daniel L.
  • Accounts of Chemical Research, Vol. 42, Issue 12, p. 1974-1982
  • DOI: 10.1021/ar900110c

The roles of the first and second coordination spheres in the design of molecular catalysts for H 2 production and oxidation
journal, January 2009

  • Rakowski DuBois, M.; DuBois, Daniel L.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B801197B

Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages
journal, November 2009

  • Jacques, P. -A.; Artero, V.; Pecaut, J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 49
  • DOI: 10.1073/pnas.0907775106

Electrocatalytic reduction of protons to hydrogen by a water-compatible cobalt polypyridyl platform
journal, January 2010

  • Bigi, Julian P.; Hanna, Tamara E.; Harman, W. Hill
  • Chem. Commun., Vol. 46, Issue 6
  • DOI: 10.1039/B915846D

Catalytic hydrogen production at cobalt centres
journal, November 2010

  • Losse, Sebastian; Vos, Johannes G.; Rau, Sven
  • Coordination Chemistry Reviews, Vol. 254, Issue 21-22
  • DOI: 10.1016/j.ccr.2010.06.004

Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water
journal, June 2011

  • Sun, Yujie; Bigi, Julian P.; Piro, Nicholas A.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja202743r

Splitting Water with Cobalt
journal, July 2011

  • Artero, Vincent; Chavarot-Kerlidou, Murielle; Fontecave, Marc
  • Angewandte Chemie International Edition, Vol. 50, Issue 32
  • DOI: 10.1002/anie.201007987

Electro- and photocatalytic hydrogen generation in acetonitrile and aqueous solutions by a cobalt macrocyclic Schiff-base complex
journal, September 2011


[Ni(P Ph 2 N C6H4X 2 ) 2 ] 2+ Complexes as Electrocatalysts for H 2 Production: Effect of Substituents, Acids, and Water on Catalytic Rates
journal, April 2011

  • Kilgore, Uriah J.; Roberts, John A. S.; Pool, Douglas H.
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja109755f

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

Rapid Water Reduction to H 2 Catalyzed by a Cobalt Bis(iminopyridine) Complex
journal, November 2011

  • Stubbert, Bryan D.; Peters, Jonas C.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja2078015

Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges
journal, January 2012

  • Du, Pingwu; Eisenberg, Richard
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03250c

Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts
journal, January 2012

  • Wang, Mei; Chen, Lin; Sun, Licheng
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee03309g

Electrocatalytic Hydrogen Evolution in Acidic Water with Molecular Cobalt Tetraazamacrocycles
journal, February 2012

  • McCrory, Charles C. L.; Uyeda, Christopher; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja210661k

[Ni(P Me 2 N Ph 2 ) 2 ](BF 4 ) 2 as an Electrocatalyst for H 2 Production
journal, March 2012

  • Wiese, Stefan; Kilgore, Uriah J.; DuBois, Daniel L.
  • ACS Catalysis, Vol. 2, Issue 5
  • DOI: 10.1021/cs300019h

Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex
journal, April 2012

  • Singh, Wangkheimayum Marjit; Baine, Teera; Kudo, Shotaro
  • Angewandte Chemie International Edition, Vol. 51, Issue 24
  • DOI: 10.1002/anie.201200082

A tridentate Ni pincer for aqueous electrocatalytic hydrogen production
journal, January 2012

  • Luca, Oana R.; Konezny, Steven J.; Blakemore, James D.
  • New Journal of Chemistry, Vol. 36, Issue 5
  • DOI: 10.1039/c2nj20912h

Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy2PYMe
journal, January 2013

  • Nippe, Michael; Khnayzer, Rony S.; Panetier, Julien A.
  • Chemical Science, Vol. 4, Issue 10
  • DOI: 10.1039/c3sc51660a

Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?
journal, January 2013

  • Artero, Vincent; Fontecave, Marc
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35334B

Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions
journal, January 2013

  • Thoi, V. Sara; Sun, Yujie; Long, Jeffrey R.
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35272A

A mechanistic study of proton reduction catalyzed by a pentapyridine cobalt complex: evidence for involvement of an anation-based pathway
journal, January 2013

  • King, Amanda E.; Surendranath, Yogesh; Piro, Nicholas A.
  • Chemical Science, Vol. 4, Issue 4
  • DOI: 10.1039/c3sc22239j

Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes
journal, January 2013

  • Zhang, Peili; Wang, Mei; Gloaguen, Frederic
  • Chemical Communications, Vol. 49, Issue 82
  • DOI: 10.1039/c3cc43491e

Earth-abundant hydrogen evolution electrocatalysts
journal, January 2014

  • McKone, James R.; Marinescu, Smaranda C.; Brunschwig, Bruce S.
  • Chem. Sci., Vol. 5, Issue 3
  • DOI: 10.1039/C3SC51711J

Molecular cobalt electrocatalyst for proton reduction at low overpotential
journal, January 2014

  • Ahn, Hyun S.; Davenport, Timothy C.; Tilley, T. Don
  • Chemical Communications, Vol. 50, Issue 29
  • DOI: 10.1039/c3cc49682a

A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential
journal, January 2014

  • Chen, Lin; Wang, Mei; Han, Kai
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42194E

Development of Molecular Electrocatalysts for Energy Storage
journal, February 2014


Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides
journal, January 2014

  • Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.
  • Chem. Commun., Vol. 50, Issue 24
  • DOI: 10.1039/c3cc46135a

Electrocatalytic H 2 Evolution by Proton-Gated Hangman Iron Porphyrins
journal, May 2014

  • Graham, Daniel J.; Nocera, Daniel G.
  • Organometallics, Vol. 33, Issue 18
  • DOI: 10.1021/om500300e

Hydrogen Evolution Catalyzed by Cobalt Diimine–Dioxime Complexes
journal, May 2015

  • Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent
  • Accounts of Chemical Research, Vol. 48, Issue 5
  • DOI: 10.1021/acs.accounts.5b00058

Recent developments in hydrogen evolving molecular cobalt(II)–polypyridyl catalysts
journal, December 2015

  • Queyriaux, Nicolas; Jane, Reuben T.; Massin, Julien
  • Coordination Chemistry Reviews, Vol. 304-305
  • DOI: 10.1016/j.ccr.2015.03.014

Nickel Complexes for Robust Light-Driven and Electrocatalytic Hydrogen Production from Water
journal, January 2015


Electrocatalytic Dihydrogen Production by an Earth-Abundant Manganese Bipyridine Catalyst
journal, June 2015


Metal–Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen
journal, June 2015


A Cobalt–Dithiolene Complex for the Photocatalytic and Electrocatalytic Reduction of Protons
journal, October 2011

  • McNamara, William R.; Han, Zhiji; Alperin, Paul J.
  • Journal of the American Chemical Society, Vol. 133, Issue 39
  • DOI: 10.1021/ja207842r

Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions
journal, June 2012

  • McNamara, W. R.; Han, Z.; Yin, C. -J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1120757109

Computational Study of Anomalous Reduction Potentials for Hydrogen Evolution Catalyzed by Cobalt Dithiolene Complexes
journal, September 2012

  • Solis, Brian H.; Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja306857q

A perspective on solar energy conversion and water photosplitting by dithiolene complexes
journal, November 2012

  • Zarkadoulas, Athanasios; Koutsouri, Eugenia; Mitsopoulou, Christiana A.
  • Coordination Chemistry Reviews, Vol. 256, Issue 21-22
  • DOI: 10.1016/j.ccr.2012.04.016

Cobalt complexes as artificial hydrogenases for the reductive side of water splitting
journal, August 2013

  • Eckenhoff, William T.; McNamara, William R.; Du, Pingwu
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2013.05.003

Proton-Coupled Electron Transfer in Molecular Electrocatalysis: Theoretical Methods and Design Principles
journal, April 2014

  • Solis, Brian H.; Hammes-Schiffer, Sharon
  • Inorganic Chemistry, Vol. 53, Issue 13
  • DOI: 10.1021/ic5002896

Photocatalytic hydrogen evolution from a cobalt/nickel complex with dithiolene ligands under irradiation with visible light
journal, January 2015

  • Rao, Heng; Wang, Zhi-Yuan; Zheng, Hui-Qin
  • Catalysis Science & Technology, Vol. 5, Issue 4
  • DOI: 10.1039/C4CY01574F

Proton-Coupled Electron Transfer: Moving Together and Charging Forward
journal, July 2015

  • Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04087

Dimerization and stacking in transition-metal bisdithiolenes and tetrathiolates
journal, October 1985

  • Alvarez, Santiago; Vicente, Ramon; Hoffmann, Roald
  • Journal of the American Chemical Society, Vol. 107, Issue 22
  • DOI: 10.1021/ja00308a018

The dithioleneligand—‘innocent’ or ‘non-innocent’? A theoretical and experimental study of some cobalt–dithiolene complexes
journal, January 2007

  • Periyasamy, Ganga; Burton, Neil A.; Hillier, Ian H.
  • Faraday Discuss., Vol. 135
  • DOI: 10.1039/B607144A

Dithiolene radicals: Sulfur K-edge X-ray absorption spectroscopy and Harry's intuition
journal, April 2011


Noninnocence in Metal Complexes: A Dithiolene Dawn
journal, October 2011

  • Eisenberg, Richard; Gray, Harry B.
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic2011748

Preface: Forum on Redox-Active Ligands
journal, October 2011


Manifestations of Noninnocent Ligand Behavior
journal, October 2011


Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions
journal, January 2012

  • Lyaskovskyy, Volodymyr; de Bruin, Bas
  • ACS Catalysis, Vol. 2, Issue 2
  • DOI: 10.1021/cs200660v

Redox-Active Ligands in Catalysis
journal, September 2012

  • Praneeth, Vijayendran K. K.; Ringenberg, Mark R.; Ward, Thomas R.
  • Angewandte Chemie International Edition, Vol. 51, Issue 41
  • DOI: 10.1002/anie.201204100

Redox-active ligands in catalysis
journal, January 2013

  • Luca, Oana R.; Crabtree, Robert H.
  • Chem. Soc. Rev., Vol. 42, Issue 4
  • DOI: 10.1039/C2CS35228A

Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes
journal, June 2014

  • Letko, Christopher S.; Panetier, Julien A.; Head-Gordon, Martin
  • Journal of the American Chemical Society, Vol. 136, Issue 26
  • DOI: 10.1021/ja5019755

LOBA: a localized orbital bonding analysis to calculate oxidation states, with application to a model water oxidation catalyst
journal, January 2009

  • Thom, Alex J. W.; Sundstrom, Eric J.; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 47
  • DOI: 10.1039/b915364k

Studies of Cobalt-Mediated Electrocatalytic CO 2 Reduction Using a Redox-Active Ligand
journal, April 2014

  • Lacy, David C.; McCrory, Charles C. L.; Peters, Jonas C.
  • Inorganic Chemistry, Vol. 53, Issue 10
  • DOI: 10.1021/ic403122j

Visible Light Sensitized CO 2 Activation by the Tetraaza [Co II N 4 H(MeCN)] 2+ Complex Investigated by FT-IR Spectroscopy and DFT Calculations
journal, February 2015

  • Zhang, M.; El-Roz, M.; Frei, H.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 9
  • DOI: 10.1021/jp5127738

A Nickel Thiolate Catalyst for the Long-Lived Photocatalytic Production of Hydrogen in a Noble-Metal-Free System
journal, January 2012

  • Han, Zhiji; McNamara, William R.; Eum, Min-Sik
  • Angewandte Chemie International Edition, Vol. 51, Issue 7
  • DOI: 10.1002/anie.201107329

Nickel Pyridinethiolate Complexes as Catalysts for the Light-Driven Production of Hydrogen from Aqueous Solutions in Noble-Metal-Free Systems
journal, September 2013

  • Han, Zhiji; Shen, Luxi; Brennessel, William W.
  • Journal of the American Chemical Society, Vol. 135, Issue 39
  • DOI: 10.1021/ja405257s

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


Density-functional approximation for the correlation energy of the inhomogeneous electron gas
journal, June 1986


Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms
journal, February 1970

  • Wachters, A. J. H.
  • The Journal of Chemical Physics, Vol. 52, Issue 3
  • DOI: 10.1063/1.1673095

Theoretical studies of the first‐ and second‐row transition‐metal methyls and their positive ions
journal, August 1989

  • Bauschlicher, Charles W.; Langhoff, Stephen R.; Partridge, Harry
  • The Journal of Chemical Physics, Vol. 91, Issue 4
  • DOI: 10.1063/1.456998

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

The influence of polarization functions on molecular orbital hydrogenation energies
journal, January 1973

  • Hariharan, P. C.; Pople, J. A.
  • Theoretica Chimica Acta, Vol. 28, Issue 3
  • DOI: 10.1007/BF00533485

Convergence acceleration of iterative sequences. the case of scf iteration
journal, July 1980


ImprovedSCF convergence acceleration
journal, January 1982


A geometric approach to direct minimization
journal, June 2002


A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach
journal, December 2010

  • Lange, Adrian W.; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 133, Issue 24
  • DOI: 10.1063/1.3511297

Symmetric versus asymmetric discretization of the integral equations in polarizable continuum solvation models
journal, June 2011


Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory
journal, July 2012


Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Works referencing / citing this record:

A cobalt complex with a bioinspired molybdopterin-like ligand: a catalyst for hydrogen evolution
journal, January 2016

  • Fogeron, Thibault; Porcher, Jean-Philippe; Gomez-Mingot, Maria
  • Dalton Transactions, Vol. 45, Issue 37
  • DOI: 10.1039/c6dt01824f

Thermodynamic Properties of Hydrogen-Producing Cobaloxime Catalysts: A Density Functional Theory Analysis
journal, January 2019