DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle

Abstract

Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear–wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core–mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure–induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermal conductivity of Fe–bearing bridgmanite to 120 GPa using optical pump–probe spectroscopy. The conductivity of Fe–bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure–induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid–lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermalmore » conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. In conclusion, the CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Academia Sinica, Taipei (Taiwan)
  2. Okayama Univ., Misasa (Japan)
  3. Univ. of Texas at Austin, Austin TX (United States)
Publication Date:
Research Org.:
Univ. of Chicago, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1474280
Grant/Contract Number:  
FG02-94ER14466
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Solid Earth
Additional Journal Information:
Journal Volume: 122; Journal Issue: 7; Journal ID: ISSN 2169-9313
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; thermal conductivity; bridgmanite; geodynamics

Citation Formats

Hsieh, Wen -Pin, Deschamps, Frédéric, Okuchi, Takuo, and Lin, Jung -Fu. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle. United States: N. p., 2017. Web. doi:10.1002/2017JB014339.
Hsieh, Wen -Pin, Deschamps, Frédéric, Okuchi, Takuo, & Lin, Jung -Fu. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle. United States. https://doi.org/10.1002/2017JB014339
Hsieh, Wen -Pin, Deschamps, Frédéric, Okuchi, Takuo, and Lin, Jung -Fu. Mon . "Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle". United States. https://doi.org/10.1002/2017JB014339. https://www.osti.gov/servlets/purl/1474280.
@article{osti_1474280,
title = {Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle},
author = {Hsieh, Wen -Pin and Deschamps, Frédéric and Okuchi, Takuo and Lin, Jung -Fu},
abstractNote = {Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear–wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core–mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure–induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermal conductivity of Fe–bearing bridgmanite to 120 GPa using optical pump–probe spectroscopy. The conductivity of Fe–bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure–induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid–lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. In conclusion, the CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.},
doi = {10.1002/2017JB014339},
journal = {Journal of Geophysical Research. Solid Earth},
number = 7,
volume = 122,
place = {United States},
year = {Mon Jun 19 00:00:00 EDT 2017},
month = {Mon Jun 19 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 37 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects
journal, January 2012


Viscosity jump in Earths mid-mantle
journal, December 2015


Optical Absorption and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals
journal, December 2008


Core–mantle boundary heat flow
journal, January 2008

  • Lay, Thorne; Hernlund, John; Buffett, Bruce A.
  • Nature Geoscience, Vol. 1, Issue 1
  • DOI: 10.1038/ngeo.2007.44

Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure
journal, July 2007

  • Gubbins, David; Willis, Ashley P.; Sreenivasan, Binod
  • Physics of the Earth and Planetary Interiors, Vol. 162, Issue 3-4
  • DOI: 10.1016/j.pepi.2007.04.014

Post-Perovskite Phase Transition in MgSiO3
journal, May 2004


Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K
journal, June 2004

  • Xu, Yousheng; Shankland, Thomas J.; Linhardt, Sven
  • Physics of the Earth and Planetary Interiors, Vol. 143-144
  • DOI: 10.1016/j.pepi.2004.03.005

Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure
journal, August 2013

  • Dalton, Douglas Allen; Hsieh, Wen-Pin; Hohensee, Gregory T.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02400

Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K
journal, December 2004


Spin Transitions in Mantle Minerals
journal, May 2014


Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann–Franz law
journal, September 2007


Radiative conductivity in the Earth’s lower mantle
journal, November 2008

  • Goncharov, Alexander F.; Haugen, Benjamin D.; Struzhkin, Viktor V.
  • Nature, Vol. 456, Issue 7219
  • DOI: 10.1038/nature07412

Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure
journal, May 2010

  • Hsu, Han; Umemoto, Koichiro; Blaha, Peter
  • Earth and Planetary Science Letters, Vol. 294, Issue 1-2
  • DOI: 10.1016/j.epsl.2010.02.031

Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes
journal, March 1999


Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures
journal, June 2015

  • Hsieh, Wen-Pin
  • Journal of Applied Physics, Vol. 117, Issue 23
  • DOI: 10.1063/1.4922632

Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar
journal, June 1978

  • Mao, H. K.; Bell, P. M.; Shaner, J. W.
  • Journal of Applied Physics, Vol. 49, Issue 6
  • DOI: 10.1063/1.325277

Ab initio Lattice Thermal Conductivity of MgSiO 3 Perovskite as Found in Earth’s Lower Mantle
journal, January 2013


Thermal diffusivity of MgSiO 3 perovskite
journal, February 1991

  • Osako, Masahiro; Ito, Eiji
  • Geophysical Research Letters, Vol. 18, Issue 2
  • DOI: 10.1029/91GL00212

Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters
journal, November 2008

  • Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3020759

Elasticity of (Mg,Fe)SiO 3 -Perovskite at high pressures
journal, January 2002


Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle
journal, October 2004


Stable intermediate-spin ferrous iron in lower-mantle perovskite
journal, September 2008

  • McCammon, C.; Kantor, I.; Narygina, O.
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo309

Thermoelasticity of Fe 2+ -bearing bridgmanite
journal, March 2015

  • Shukla, Gaurav; Wu, Zhongqing; Hsu, Han
  • Geophysical Research Letters, Vol. 42, Issue 6
  • DOI: 10.1002/2014GL062888

Thermal conductivity of compressed H 2 O to 22 GPa: A test of the Leibfried-Schlömann equation
journal, April 2011


Numerical dynamos with outer boundary heat flux inferred from probabilistic tomography—consequences for latitudinal distribution of magnetic flux
journal, September 2015

  • Amit, Hagay; Deschamps, Frédéric; Choblet, Gaël
  • Geophysical Journal International, Vol. 203, Issue 2
  • DOI: 10.1093/gji/ggv332

Earth's Core and the Geodynamo
journal, June 2000


High-spin Fe 2+ and Fe 3+ in single-crystal aluminous bridgmanite in the lower mantle : Spin and Valence States of Bridgmanite
journal, July 2016

  • Lin, Jung-Fu; Mao, Zhu; Yang, Jing
  • Geophysical Research Letters, Vol. 43, Issue 13
  • DOI: 10.1002/2016GL069836

Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite
journal, September 2008

  • Lin, Jung-Fu; Watson, Heather; Vankó, György
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo310

Seismic and mineralogical structures of the lower mantle from probabilistic tomography: STRUCTURES OF THE LOWER MANTLE
journal, June 2012

  • Mosca, I.; Cobden, L.; Deuss, A.
  • Journal of Geophysical Research: Solid Earth, Vol. 117, Issue B6
  • DOI: 10.1029/2011JB008851

A hemispherical dynamo model: Implications for the Martian crustal magnetization
journal, April 2013


Iron Partitioning and Density Changes of Pyrolite in Earth’s Lower Mantle
journal, December 2009

  • Irifune, Tetsuo; Shinmei, Toru; McCammon, Catherine A.
  • Science, Vol. 327, Issue 5962
  • DOI: 10.1126/science.1181443

Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity: SUBDUCTED SLABS IN THE TRANSITION ZONE
journal, November 2013

  • Fukao, Yoshio; Obayashi, Masayuki
  • Journal of Geophysical Research: Solid Earth, Vol. 118, Issue 11
  • DOI: 10.1002/2013JB010466

Scattering of lattice waves by point defects
journal, August 1962


Effect of chemistry on the compressibility of silicate perovskite in the lower mantle
journal, June 2012

  • Ballaran, Tiziana Boffa; Kurnosov, Alexander; Glazyrin, Konstantin
  • Earth and Planetary Science Letters, Vol. 333-334
  • DOI: 10.1016/j.epsl.2012.03.029

A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO 3 perovskite up to 120 GPa
journal, January 2005

  • Jackson, Jennifer M.; Sturhahn, Wolfgang; Shen, Guoyin
  • American Mineralogist, Vol. 90, Issue 1
  • DOI: 10.2138/am.2005.1633

Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary
journal, October 2012

  • Ohta, Kenji; Yagi, Takashi; Taketoshi, Naoyuki
  • Earth and Planetary Science Letters, Vol. 349-350
  • DOI: 10.1016/j.epsl.2012.06.043

Vibrational and thermodynamic properties of MgSiO 3 postperovskite : THERMODYNAMIC PROPERTIES OF POSTPEROVSKITE
journal, February 2005

  • Tsuchiya, Jun; Tsuchiya, Taku; Wentzcovitch, Renata M.
  • Journal of Geophysical Research: Solid Earth, Vol. 110, Issue B2
  • DOI: 10.1029/2004JB003409

Experimental study of thermal conductivity at high pressures: Implications for the deep Earth’s interior
journal, October 2015

  • Goncharov, Alexander F.; Lobanov, Sergey S.; Tan, Xiaojing
  • Physics of the Earth and Planetary Interiors, Vol. 247
  • DOI: 10.1016/j.pepi.2015.02.004

Structure and Dynamics of Earth's Lower Mantle
journal, May 2008


Effect of composition, structure, and spin state on the thermal conductivity of the Earth's lower mantle
journal, June 2010

  • Goncharov, A. F.; Struzhkin, V. V.; Montoya, J. A.
  • Physics of the Earth and Planetary Interiors, Vol. 180, Issue 3-4
  • DOI: 10.1016/j.pepi.2010.02.002

Synthesis of large and homogeneous single crystals of water-bearing minerals by slow cooling at deep-mantle pressures
journal, July 2015

  • Okuchi, Takuo; Purevjav, Narangoo; Tomioka, Naotaka
  • American Mineralogist, Vol. 100, Issue 7
  • DOI: 10.2138/am-2015-5237

First-principles calculations of the lattice thermal conductivity of the lower mantle
journal, October 2015

  • Stackhouse, Stephen; Stixrude, Lars; Karki, Bijaya B.
  • Earth and Planetary Science Letters, Vol. 427
  • DOI: 10.1016/j.epsl.2015.06.050

Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth's deep mantle
journal, November 2012

  • Haigis, Volker; Salanne, Mathieu; Jahn, Sandro
  • Earth and Planetary Science Letters, Vol. 355-356
  • DOI: 10.1016/j.epsl.2012.09.002

The primitive nature of large low shear-wave velocity provinces
journal, October 2012

  • Deschamps, Frédéric; Cobden, Laura; Tackley, Paul J.
  • Earth and Planetary Science Letters, Vol. 349-350
  • DOI: 10.1016/j.epsl.2012.07.012

Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core
journal, October 2011

  • Manthilake, G. M.; de Koker, N.; Frost, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 44
  • DOI: 10.1073/pnas.1110594108

Spin-State Crossover and Hyperfine Interactions of Ferric Iron in MgSiO 3 Perovskite
journal, March 2011


Mössbauer modeling to interpret the spin state of iron in (Mg,Fe)SiO 3 perovskite : MOSSBAUER MODELING OF Fe IN PEROVSKITE
journal, August 2009

  • Bengtson, Amelia; Li, Jie; Morgan, Dane
  • Geophysical Research Letters, Vol. 36, Issue 15
  • DOI: 10.1029/2009GL038340

Variation of thermal conductivity and heat flux at the Earth's core mantle boundary
journal, March 2014

  • Ammann, Michael W.; Walker, Andrew M.; Stackhouse, Stephen
  • Earth and Planetary Science Letters, Vol. 390
  • DOI: 10.1016/j.epsl.2014.01.009

The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow
journal, December 2002


Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle
journal, February 2013

  • Potapkin, V.; McCammon, C.; Glazyrin, K.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2436

First-principles study of intermediate-spin ferrous iron in the Earth's lower mantle
journal, November 2014


Direct measurement of thermal conductivity in solid iron at planetary core conditions
journal, June 2016

  • Konôpková, Zuzana; McWilliams, R. Stewart; Gómez-Pérez, Natalia
  • Nature, Vol. 534, Issue 7605
  • DOI: 10.1038/nature18009

Electrical conductivity as a constraint on lower mantle thermo-chemical structure
journal, September 2016


An optical pump-probe technique for measuring the thermal conductivity of liquids
journal, June 2008

  • Schmidt, Aaron; Chiesa, Matteo; Chen, Xiaoyuan
  • Review of Scientific Instruments, Vol. 79, Issue 6
  • DOI: 10.1063/1.2937458

Distinguishing high surf from volcanic long-period earthquakes: Lyons et al.: LP seismicity from surf
journal, February 2014

  • Lyons, John J.; Haney, Matthew M.; Fee, David
  • Geophysical Research Letters, Vol. 41, Issue 4
  • DOI: 10.1002/2013GL058954

Spin Transitions in Mantle Minerals
journal, May 2014


The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow
journal, December 2002


Works referencing / citing this record:

Electrical resistivity of liquid Fe to 12 GPa: Implications for heat flow in cores of terrestrial bodies
journal, July 2018


Effects of iron on the lattice thermal conductivity of Earth’s deep mantle and implications for mantle dynamics
journal, April 2018

  • Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 16
  • DOI: 10.1073/pnas.1718557115

Thermal Conductivity Anomaly in (Fe 0.78 Mg 0.22 )CO 3 Siderite Across Spin Transition of Iron
journal, February 2019

  • Chao, Keng‐Hsien; Hsieh, Wen‐Pin
  • Journal of Geophysical Research: Solid Earth, Vol. 124, Issue 2
  • DOI: 10.1029/2018jb017003

The dynamics and impact of compositionally originating provinces in a mantle convection model featuring rheologically obtained plates
journal, December 2019

  • Langemeyer, Sean M.; Lowman, Julian P.; Tackley, Paul J.
  • Geophysical Journal International, Vol. 220, Issue 3
  • DOI: 10.1093/gji/ggz497

Lattice Thermal Conductivity of MgSiO 3 Postperovskite Under the Lowermost Mantle Conditions From Ab Initio Anharmonic Lattice Dynamics
journal, November 2019

  • Dekura, Haruhiko; Tsuchiya, Taku
  • Geophysical Research Letters, Vol. 46, Issue 22
  • DOI: 10.1029/2019gl085273