DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure

Abstract

Magnetic skyrmions as swirling spin textures with a nontrivial topology have potential applications as magnetic memory and storage devices. Since the initial discovery of skyrmions in non-centrosymmetric B20 materials, the recent effort has focused on exploring room-temperature skyrmions in heavy metal and ferromagnetic heterostructures, a material platform compatible with existing spintronic manufacturing technology. Here, we report the surprising observation that a room-temperature skyrmion phase can be stabilized in an entirely different class of systems based on antiferromagnetic (AFM) metal and ferromagnetic (FM) metal IrMn/CoFeB heterostructures. There are a number of distinct advantages of exploring skyrmions in such heterostructures including zero-field stabilization, tunable antiferromagnetic order, and sizable spin–orbit torque (SOT) for energy-efficient current manipulation. Through direct spatial imaging of individual skyrmions, quantitative evaluation of the interfacial Dzyaloshinskii–Moriya interaction, and demonstration of current-driven skyrmion motion, our findings firmly establish the AFM/FM heterostructures as a promising material platform for exploring skyrmion physics and device applications.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [4];  [4]; ORCiD logo [4];  [4];  [5];  [5];  [6]; ORCiD logo [5];  [3];  [2];  [4]; ORCiD logo [4]
  1. Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics
  2. Univ. of California, Santa Barbara, CA (United States). Dept. of Physics
  3. Univ. of Texas, Austin, TX (United States). Dept. of Physics
  4. Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering
  5. Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics
  6. Tsinghua Univ., Beijing (China). State Key Lab. of Low-Dimensional Quantum Physics and Dept. of Physics; Collaborative Innovation Center of Quantum Matter, Beijing (China)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470118
Grant/Contract Number:  
SC0012670
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 2; Related Information: SHINES partners with University of California, Riverside (lead); Arizona State University; Colorado State University; Johns Hopkins University; University of California Irvine; University of California Los Angeles; University of Texas at Austin; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; phonons; thermal conductivity; thermoelectric; spin dynamics; spintronics

Citation Formats

Yu, Guoqiang, Jenkins, Alec, Ma, Xin, Razavi, Seyed Armin, He, Congli, Yin, Gen, Shao, Qiming, He, Qing lin, Wu, Hao, Li, Wenjing, Jiang, Wanjun, Han, Xiufeng, Li, Xiaoqin, Bleszynski Jayich, Ania Claire, Amiri, Pedram Khalili, and Wang, Kang L. Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure. United States: N. p., 2017. Web. doi:10.1021/acs.nanolett.7b04400.
Yu, Guoqiang, Jenkins, Alec, Ma, Xin, Razavi, Seyed Armin, He, Congli, Yin, Gen, Shao, Qiming, He, Qing lin, Wu, Hao, Li, Wenjing, Jiang, Wanjun, Han, Xiufeng, Li, Xiaoqin, Bleszynski Jayich, Ania Claire, Amiri, Pedram Khalili, & Wang, Kang L. Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure. United States. https://doi.org/10.1021/acs.nanolett.7b04400
Yu, Guoqiang, Jenkins, Alec, Ma, Xin, Razavi, Seyed Armin, He, Congli, Yin, Gen, Shao, Qiming, He, Qing lin, Wu, Hao, Li, Wenjing, Jiang, Wanjun, Han, Xiufeng, Li, Xiaoqin, Bleszynski Jayich, Ania Claire, Amiri, Pedram Khalili, and Wang, Kang L. Fri . "Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure". United States. https://doi.org/10.1021/acs.nanolett.7b04400. https://www.osti.gov/servlets/purl/1470118.
@article{osti_1470118,
title = {Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure},
author = {Yu, Guoqiang and Jenkins, Alec and Ma, Xin and Razavi, Seyed Armin and He, Congli and Yin, Gen and Shao, Qiming and He, Qing lin and Wu, Hao and Li, Wenjing and Jiang, Wanjun and Han, Xiufeng and Li, Xiaoqin and Bleszynski Jayich, Ania Claire and Amiri, Pedram Khalili and Wang, Kang L.},
abstractNote = {Magnetic skyrmions as swirling spin textures with a nontrivial topology have potential applications as magnetic memory and storage devices. Since the initial discovery of skyrmions in non-centrosymmetric B20 materials, the recent effort has focused on exploring room-temperature skyrmions in heavy metal and ferromagnetic heterostructures, a material platform compatible with existing spintronic manufacturing technology. Here, we report the surprising observation that a room-temperature skyrmion phase can be stabilized in an entirely different class of systems based on antiferromagnetic (AFM) metal and ferromagnetic (FM) metal IrMn/CoFeB heterostructures. There are a number of distinct advantages of exploring skyrmions in such heterostructures including zero-field stabilization, tunable antiferromagnetic order, and sizable spin–orbit torque (SOT) for energy-efficient current manipulation. Through direct spatial imaging of individual skyrmions, quantitative evaluation of the interfacial Dzyaloshinskii–Moriya interaction, and demonstration of current-driven skyrmion motion, our findings firmly establish the AFM/FM heterostructures as a promising material platform for exploring skyrmion physics and device applications.},
doi = {10.1021/acs.nanolett.7b04400},
journal = {Nano Letters},
number = 2,
volume = 18,
place = {United States},
year = {Fri Dec 22 00:00:00 EST 2017},
month = {Fri Dec 22 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 79 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spin Transfer Torques in MnSi at Ultralow Current Densities
journal, December 2010


Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum
journal, May 2012


Room temperature skyrmion ground state stabilized through interlayer exchange coupling
journal, June 2015

  • Chen, Gong; Mascaraque, Arantzazu; N'Diaye, Alpha T.
  • Applied Physics Letters, Vol. 106, Issue 24
  • DOI: 10.1063/1.4922726

Skyrmions on the track
journal, March 2013

  • Fert, Albert; Cros, Vincent; Sampaio, João
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2013.29

Current-induced skyrmion dynamics in constricted geometries
journal, September 2013

  • Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto
  • Nature Nanotechnology, Vol. 8, Issue 10
  • DOI: 10.1038/nnano.2013.176

Magnetic bilayer-skyrmions without skyrmion Hall effect
journal, January 2016

  • Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10293

Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
journal, October 2013


Field-free magnetization reversal by spin-Hall effect and exchange bias
journal, March 2016

  • van den Brink, A.; Vermijs, G.; Solignac, A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10854

Room-Temperature Creation and Spin–Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry
journal, February 2016


Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor
journal, May 2016

  • Pelliccione, Matthew; Jenkins, Alec; Ovartchaiyapong, Preeti
  • Nature Nanotechnology, Vol. 11, Issue 8
  • DOI: 10.1038/nnano.2016.68

Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
journal, February 2016

  • Woo, Seonghoon; Litzius, Kai; Krüger, Benjamin
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4593

Antiferromagnetic Skyrmion: Stability, Creation and Manipulation
journal, April 2016

  • Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24795

Room-Temperature Skyrmion Shift Device for Memory Application
journal, December 2016


Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
journal, December 2016

  • Litzius, Kai; Lemesh, Ivan; Krüger, Benjamin
  • Nature Physics, Vol. 13, Issue 2
  • DOI: 10.1038/nphys4000

Skyrmions in magnetic multilayers
journal, August 2017


Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
journal, August 2011

  • Miron, Ioan Mihai; Garello, Kevin; Gaudin, Gilles
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10309

Topological Hall Effect in the A Phase of MnSi
journal, May 2009


Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe
journal, December 2010

  • Yu, X. Z.; Kanazawa, N.; Onose, Y.
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2916

Electrical switching of an antiferromagnet
journal, January 2016


Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems
journal, February 2017


Topological properties and dynamics of magnetic skyrmions
journal, December 2013


Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions
journal, March 2015

  • Zhang, Xichao; Ezawa, Motohiko; Zhou, Yan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09400

Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation
journal, March 2014


Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures
journal, July 2016

  • Oh, Young-Wan; Chris Baek, Seung-heon; Kim, Y. M.
  • Nature Nanotechnology, Vol. 11, Issue 10
  • DOI: 10.1038/nnano.2016.109

Blowing magnetic skyrmion bubbles
journal, June 2015


Real-space observation of a two-dimensional skyrmion crystal
journal, June 2010


Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses
journal, June 1980


Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature
journal, April 2016


Novel Chiral Magnetic Domain Wall Structure in Fe / Ni / Cu ( 001 ) Films
journal, April 2013


Spin-orbit torques in perpendicularly magnetized Ir22Mn78/Co20Fe60B20/MgO multilayer
journal, November 2016

  • Wu, Di; Yu, Guoqiang; Chen, Ching-Tzu
  • Applied Physics Letters, Vol. 109, Issue 22
  • DOI: 10.1063/1.4968785

Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system
journal, February 2016

  • Fukami, Shunsuke; Zhang, Chaoliang; DuttaGupta, Samik
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4566

Current-driven dynamics of chiral ferromagnetic domain walls
journal, June 2013

  • Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min
  • Nature Materials, Vol. 12, Issue 7
  • DOI: 10.1038/nmat3675

Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes
journal, October 2015


Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
journal, January 2016

  • Boulle, Olivier; Vogel, Jan; Yang, Hongxin
  • Nature Nanotechnology, Vol. 11, Issue 5
  • DOI: 10.1038/nnano.2015.315

Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
journal, January 2016

  • Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.
  • Nature Nanotechnology, Vol. 11, Issue 5
  • DOI: 10.1038/nnano.2015.313

Spin Hall Effects in Metallic Antiferromagnets
journal, November 2014


Skyrmion Lattice in a Chiral Magnet
journal, February 2009


Chiral spin torque at magnetic domain walls
journal, June 2013

  • Ryu, Kwang-Su; Thomas, Luc; Yang, See-Hun
  • Nature Nanotechnology, Vol. 8, Issue 7
  • DOI: 10.1038/nnano.2013.102

Skyrmion flow near room temperature in an ultralow current density
journal, January 2012

  • Yu, X. Z.; Kanazawa, N.; Zhang, W. Z.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1990

Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions
journal, July 2011

  • Heinze, Stefan; von Bergmann, Kirsten; Menzel, Matthias
  • Nature Physics, Vol. 7, Issue 9
  • DOI: 10.1038/nphys2045

Writing and Deleting Single Magnetic Skyrmions
journal, August 2013


Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films
journal, July 2014


Interfacial control of Dzyaloshinskii-Moriya interaction in heavy metal/ferromagnetic metal thin film heterostructures
journal, November 2016


Exchange bias
journal, February 1999


Anisotropic Superexchange Interaction and Weak Ferromagnetism
journal, October 1960


Direct observation of the skyrmion Hall effect
journal, September 2016

  • Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang
  • Nature Physics, Vol. 13, Issue 2
  • DOI: 10.1038/nphys3883

Works referencing / citing this record:

An Artificial Skyrmion Platform with Robust Tunability in Synthetic Antiferromagnetic Multilayers
journal, October 2019

  • Li, Yong; Feng, Qiyuan; Li, Sihua
  • Advanced Functional Materials, Vol. 30, Issue 3
  • DOI: 10.1002/adfm.201907140

Evidence of the Topological Hall Effect in Pt/Antiferromagnetic Insulator Bilayers
journal, December 2019


Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination
journal, February 2020


Electric-Field Control of Magnetic Order: From FeRh to Topological Antiferromagnetic Spintronics
journal, November 2018

  • Feng, Zexin; Yan, Han; Liu, Zhiqi
  • Advanced Electronic Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aelm.201800466

Nonlocal accumulation, chemical potential, and Hall effect of skyrmions in Pt/Co/Ir heterostructure
journal, January 2020


Spontaneous nanometric magnetic bubbles with various topologies in spin-reoriented La 1−x Sr x MnO 3
journal, October 2018

  • Peng, Licong; Zhang, Ying; Hong, Deshun
  • Applied Physics Letters, Vol. 113, Issue 14
  • DOI: 10.1063/1.5051014

Nonlocal accumulation, chemical potential, and Hall effect of skyrmions in Pt/Co/Ir heterostructure
journal, January 2020


Perspective: Magnetic skyrmions—Overview of recent progress in an active research field
journal, December 2018

  • Everschor-Sitte, K.; Masell, J.; Reeve, R. M.
  • Journal of Applied Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.5048972

Anatomy of Skyrmionic Textures in Magnetic Multilayers
journal, February 2019

  • Li, Wenjing; Bykova, Iuliia; Zhang, Shilei
  • Advanced Materials, Vol. 31, Issue 14
  • DOI: 10.1002/adma.201807683

Generation and stability of structurally imprinted target skyrmions in magnetic multilayers
journal, September 2019

  • Kent, Noah; Streubel, Robert; Lambert, Charles-Henri
  • Applied Physics Letters, Vol. 115, Issue 11
  • DOI: 10.1063/1.5099991

Size-tunable skyrmion bubbles in Ta/CoFeB/MgO multilayers
journal, September 2018

  • Qin, Zhaogang; Jin, Chendong; Xie, Hongkang
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 42
  • DOI: 10.1088/1361-6463/aadd59