DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques

Abstract

The primary goals of the STRong lensing Insights into the Dark Energy Survey (STRIDES) collaboration are to measure the dark energy equation of state parameter and the free streaming length of dark matter. To this aim, STRIDES is discovering strongly lensed quasars in the imaging data of the Dark Energy Survey and following them up to measure time delays, high resolution imaging, and spectroscopy sufficient to construct accurate lens models. In this paper, we first present forecasts for STRIDES. Then, we describe the STRIDES classification scheme, and give an overview of the Fall 2016 follow-up campaign. We continue by detailing the results of two selection methods, the outlier selection technique and a morphological algorithm, and presenting lens models of a system that could possibly be a lensed quasar in an unusual configuration. We conclude with the summary statistics of the Fall 2016 campaign. Including searches presented in companion papers (Anguita et al.; Ostrovski et al.), STRIDES followed up 117 targets identifying 7 new strongly lensed systems, and 7 nearly identical quasars, which could be confirmed as lenses by the detection of the lens galaxy. 76 candidates were rejected and 27 remain otherwise inconclusive, for a success rate in the rangemore » of 6–35 percent. This rate is comparable to that of previous searches like SDSS Quasar Lens Search even though the parent data set of STRIDES is purely photometric and our selection of candidates cannot rely on spectroscopic information.« less

Authors:
 [1];  [2];  [3];  [1];  [4];  [5];  [3];  [4];  [3];  [4];  [6];  [7];  [1];  [8];  [9];  [10];  [11];  [12];  [13];  [12] more »;  [12];  [10];  [10];  [14];  [15];  [14];  [16];  [1];  [4];  [5];  [17];  [18];  [19];  [4];  [4];  [12];  [20];  [21];  [22];  [23];  [24];  [25];  [26];  [22];  [27];  [21];  [28];  [4];  [25];  [29];  [30];  [31];  [23];  [4];  [32];  [33];  [34];  [35];  [36];  [4];  [37];  [22];  [38];  [23];  [39];  [40];  [41];  [27];  [4];  [42];  [43];  [27];  [44];  [18];  [45];  [46];  [47];  [48];  [43];  [12];  [4];  [18] « less
  1. Department of Physics and Astronomy, PAB, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095, USA
  2. Department of Physics and Astronomy, PAB, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095, USA; European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, DE, Germany
  3. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
  4. Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA
  5. Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
  6. MIT Kavli Institute for Astrophysics and Space Research, 37-664G, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
  7. Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA; Illinois Mathematics and Science Academy, 1500 Sullivan Road, Aurora, IL 60506, USA; University of California-Berkeley, Berkeley, CA 94720, USA
  8. Departamento de Ciencias Fisicas, Universidad Andres Bello Fernandez Concha 700, Las Condes, Santiago, 7591538, Chile; Millenium Institute of Astrophysics, 7591538, Chile
  9. Departamento de Ciencias Fisicas, Universidad Andres Bello Fernandez Concha 700, Las Condes, Santiago, 7591538, Chile
  10. Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
  11. Illinois Mathematics and Science Academy, 1500 Sullivan Road, Aurora, IL 60506, USA; Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan
  12. Department of Physics, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
  13. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  14. Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102, Chile
  15. Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK; Departamento de Astronomia, Instituto de Fsica da Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
  16. Department of Physics, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA; Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA
  17. Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany; Physik-Department, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany
  18. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  19. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
  20. Millenium Institute of Astrophysics, 7591538, Chile; Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  21. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  22. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  23. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark Str, Urbana, IL 61801, USA
  24. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  25. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  26. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  27. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
  28. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  29. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  30. Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
  31. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  32. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  33. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  34. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  35. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  36. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  37. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil; Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  38. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
  39. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain; Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  40. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  41. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  42. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  43. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  44. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  45. Brandeis University, Physics Department, 415 South Street, Waltham, MA 02453, USA
  46. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil; Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  47. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  48. National Center for Supercomputing Applications, 1205 West Clark Str, Urbana, IL 61801, USA
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1469704
Alternate Identifier(s):
OSTI ID: 1479695; OSTI ID: 1491364
Report Number(s):
arXiv:1808.04838; FERMILAB-PUB-18-064-AE
Journal ID: ISSN 0035-8711; 1687468
Grant/Contract Number:  
AC02-07CH11359; AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 481; Journal Issue: 1; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; gravitational lensing: strong; methods: statistical; catalogues

Citation Formats

Treu, T., Agnello, A., Baumer, M. A., Birrer, S., Buckley-Geer, E. J., Courbin, F., Kim, Y. J., Lin, H., Marshall, P. J., Nord, B., Schechter, P. L., Sivakumar, P. R., Abramson, L. E., Anguita, T., Apostolovski, Y., Auger, M. W., Chan, J. H. H., Chen, G. C. F., Collett, T. E., Fassnacht, C. D., Hsueh, J-W, Lemon, C., McMahon, R. G., Motta, V., Ostrovski, F., Rojas, K., Rusu, C. E., Williams, P., Frieman, J., Meylan, G., Suyu, S. H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Banerji, M., Brooks, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., D’Andrea, C. B., da Costa, L. N., De Vicente, J., Doel, P., Eifler, T. F., Flaugher, B., Fosalba, P., García-Bellido, J., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Hollowood, D., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Martini, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., and Walker, A. R. The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques. United States: N. p., 2018. Web. doi:10.1093/mnras/sty2329.
Treu, T., Agnello, A., Baumer, M. A., Birrer, S., Buckley-Geer, E. J., Courbin, F., Kim, Y. J., Lin, H., Marshall, P. J., Nord, B., Schechter, P. L., Sivakumar, P. R., Abramson, L. E., Anguita, T., Apostolovski, Y., Auger, M. W., Chan, J. H. H., Chen, G. C. F., Collett, T. E., Fassnacht, C. D., Hsueh, J-W, Lemon, C., McMahon, R. G., Motta, V., Ostrovski, F., Rojas, K., Rusu, C. E., Williams, P., Frieman, J., Meylan, G., Suyu, S. H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Banerji, M., Brooks, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., D’Andrea, C. B., da Costa, L. N., De Vicente, J., Doel, P., Eifler, T. F., Flaugher, B., Fosalba, P., García-Bellido, J., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Hollowood, D., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Martini, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., & Walker, A. R. The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques. United States. https://doi.org/10.1093/mnras/sty2329
Treu, T., Agnello, A., Baumer, M. A., Birrer, S., Buckley-Geer, E. J., Courbin, F., Kim, Y. J., Lin, H., Marshall, P. J., Nord, B., Schechter, P. L., Sivakumar, P. R., Abramson, L. E., Anguita, T., Apostolovski, Y., Auger, M. W., Chan, J. H. H., Chen, G. C. F., Collett, T. E., Fassnacht, C. D., Hsueh, J-W, Lemon, C., McMahon, R. G., Motta, V., Ostrovski, F., Rojas, K., Rusu, C. E., Williams, P., Frieman, J., Meylan, G., Suyu, S. H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Banerji, M., Brooks, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., D’Andrea, C. B., da Costa, L. N., De Vicente, J., Doel, P., Eifler, T. F., Flaugher, B., Fosalba, P., García-Bellido, J., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Hollowood, D., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Martini, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., and Walker, A. R. Fri . "The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques". United States. https://doi.org/10.1093/mnras/sty2329. https://www.osti.gov/servlets/purl/1469704.
@article{osti_1469704,
title = {The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques},
author = {Treu, T. and Agnello, A. and Baumer, M. A. and Birrer, S. and Buckley-Geer, E. J. and Courbin, F. and Kim, Y. J. and Lin, H. and Marshall, P. J. and Nord, B. and Schechter, P. L. and Sivakumar, P. R. and Abramson, L. E. and Anguita, T. and Apostolovski, Y. and Auger, M. W. and Chan, J. H. H. and Chen, G. C. F. and Collett, T. E. and Fassnacht, C. D. and Hsueh, J-W and Lemon, C. and McMahon, R. G. and Motta, V. and Ostrovski, F. and Rojas, K. and Rusu, C. E. and Williams, P. and Frieman, J. and Meylan, G. and Suyu, S. H. and Abbott, T. M. C. and Abdalla, F. B. and Allam, S. and Annis, J. and Avila, S. and Banerji, M. and Brooks, D. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Castander, F. J. and D’Andrea, C. B. and da Costa, L. N. and De Vicente, J. and Doel, P. and Eifler, T. F. and Flaugher, B. and Fosalba, P. and García-Bellido, J. and Goldstein, D. A. and Gruen, D. and Gruendl, R. A. and Gutierrez, G. and Hartley, W. G. and Hollowood, D. and Honscheid, K. and James, D. J. and Kuehn, K. and Kuropatkin, N. and Lima, M. and Maia, M. A. G. and Martini, P. and Menanteau, F. and Miquel, R. and Plazas, A. A. and Romer, A. K. and Sanchez, E. and Scarpine, V. and Schindler, R. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Tucker, D. L. and Walker, A. R.},
abstractNote = {The primary goals of the STRong lensing Insights into the Dark Energy Survey (STRIDES) collaboration are to measure the dark energy equation of state parameter and the free streaming length of dark matter. To this aim, STRIDES is discovering strongly lensed quasars in the imaging data of the Dark Energy Survey and following them up to measure time delays, high resolution imaging, and spectroscopy sufficient to construct accurate lens models. In this paper, we first present forecasts for STRIDES. Then, we describe the STRIDES classification scheme, and give an overview of the Fall 2016 follow-up campaign. We continue by detailing the results of two selection methods, the outlier selection technique and a morphological algorithm, and presenting lens models of a system that could possibly be a lensed quasar in an unusual configuration. We conclude with the summary statistics of the Fall 2016 campaign. Including searches presented in companion papers (Anguita et al.; Ostrovski et al.), STRIDES followed up 117 targets identifying 7 new strongly lensed systems, and 7 nearly identical quasars, which could be confirmed as lenses by the detection of the lens galaxy. 76 candidates were rejected and 27 remain otherwise inconclusive, for a success rate in the range of 6–35 percent. This rate is comparable to that of previous searches like SDSS Quasar Lens Search even though the parent data set of STRIDES is purely photometric and our selection of candidates cannot rely on spectroscopic information.},
doi = {10.1093/mnras/sty2329},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 1,
volume = 481,
place = {United States},
year = {Fri Aug 24 00:00:00 EDT 2018},
month = {Fri Aug 24 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection
journal, July 2017

  • Agnello, Adriano
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 2
  • DOI: 10.1093/mnras/stx1650

Discovery of two gravitationally lensed quasars in the Dark Energy Survey
journal, October 2015

  • Agnello, A.; Treu, T.; Ostrovski, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 2
  • DOI: 10.1093/mnras/stv2171

Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332
journal, March 2016

  • Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 4
  • DOI: 10.1093/mnras/stw529

DES meets Gaia: discovery of strongly lensed quasars from a multiplet search
journal, June 2018

  • Agnello, A.; Lin, H.; Kuropatkin, N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 4
  • DOI: 10.1093/mnras/sty1419

Discovery and first models of the quadruply lensed quasar SDSS J1433+6007
journal, November 2017

  • Agnello, Adriano; Grillo, Claudio; Jones, Tucker
  • Monthly Notices of the Royal Astronomical Society, Vol. 474, Issue 3
  • DOI: 10.1093/mnras/stx2950

Quasar lenses and pairs in the VST-ATLAS and Gaia
journal, December 2017

  • Agnello, A.; Schechter, P. L.; Morgan, N. D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 2
  • DOI: 10.1093/mnras/stx3226

The Sloan lens acs Survey. ix. Colors, Lensing, and Stellar Masses of Early-Type Galaxies
journal, October 2009


SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

Gravitational lens Modeling with Basis sets
journal, November 2015


The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231
journal, August 2016

  • Birrer, Simon; Amara, Adam; Refregier, Alexandre
  • Journal of Cosmology and Astroparticle Physics, Vol. 2016, Issue 08
  • DOI: 10.1088/1475-7516/2016/08/020

Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass
journal, May 2017

  • Birrer, Simon; Amara, Adam; Refregier, Alexandre
  • Journal of Cosmology and Astroparticle Physics, Vol. 2017, Issue 05
  • DOI: 10.1088/1475-7516/2017/05/037

The Sloan Lens ACS Survey. V. The Full ACS Strong‐Lens Sample
journal, August 2008

  • Bolton, Adam S.; Burles, Scott; Koopmans, Léon V. E.
  • The Astrophysical Journal, Vol. 682, Issue 2
  • DOI: 10.1086/589327

H0LiCOW – V. New COSMOGRAIL time delays of HE 0435−1223: H 0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model
journal, November 2016

  • Bonvin, V.; Courbin, F.; Suyu, S. H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw3006

The Cosmic Lens All-Sky Survey - II. Gravitational lens candidate selection and follow-up
journal, May 2003

  • Browne, I. W. A.; Wilkinson, P. N.; Jackson, N. J. F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 341, Issue 1
  • DOI: 10.1046/j.1365-8711.2003.06257.x

Internal and Collective Properties of Galaxies in the Sloan Digital Sky Survey
journal, April 2007

  • Choi, Yun‐Young; Park, Changbom; Vogeley, Michael S.
  • The Astrophysical Journal, Vol. 658, Issue 2
  • DOI: 10.1086/511060

The Population of Galaxy–Galaxy Strong Lenses in Forthcoming Optical Imaging Surveys
journal, September 2015


The Kilo-Degree Survey
journal, August 2012

  • de Jong, Jelte T. A.; Verdoes Kleijn, Gijs A.; Kuijken, Konrad H.
  • Experimental Astronomy, Vol. 35, Issue 1-2
  • DOI: 10.1007/s10686-012-9306-1

Direct Detection of Cold Dark Matter Substructure
journal, June 2002

  • Dalal, N.; Kochanek, C. S.
  • The Astrophysical Journal, Vol. 572, Issue 1
  • DOI: 10.1086/340303

The Dark Energy Survey: more than dark energy – an overview
journal, March 2016

  • Abbott, T.; Abdalla, F. B.; Aleksic, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 2, p. 1270-1299
  • DOI: 10.1093/mnras/stw641

H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction
journal, November 2016

  • Ding, Xuheng; Liao, Kai; Treu, Tommaso
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw3078

Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
journal, April 2018

  • Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.
  • The Astrophysical Journal Supplement Series, Vol. 235, Issue 2
  • DOI: 10.3847/1538-4365/aab4f5

High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. IV. Luminosity Function from the Fall Equatorial Stripe Sample
journal, January 2001

  • Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.
  • The Astronomical Journal, Vol. 121, Issue 1
  • DOI: 10.1086/318033

Gaia Data Release 2 : Summary of the contents and survey properties
journal, August 2018


The Gaia mission
journal, November 2016


The luminosity and stellar mass Fundamental Plane of early-type galaxies
journal, June 2009


The Sloan Digital sky Survey Quasar lens Search. v. Final Catalog from the Seventh data Release
journal, April 2012


THE SPITZER - WISE SURVEY OF THE ECLIPTIC POLES
journal, June 2011


Time-delay cosmography: increased leverage with angular diameter distances
journal, April 2016


Shear and Ellipticity in Gravitational Lenses
journal, June 1997

  • Keeton, C. R.; Kochanek, C. S.; Seljak, U.
  • The Astrophysical Journal, Vol. 482, Issue 2
  • DOI: 10.1086/304172

Gaia GraL: Gaia DR2 gravitational lens systems : I. New quadruply imaged quasar candidates around known quasars
journal, August 2018


Gravitationally lensed quasars in Gaia – II. Discovery of 24 lensed quasars
journal, April 2018

  • Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 4
  • DOI: 10.1093/mnras/sty911

Discovery of the Lensed Quasar System DES J0408-5354
journal, March 2017


Evidence for substructure in lens galaxies?
journal, April 1998


CORRECTING THE z ∼ 8 GALAXY LUMINOSITY FUNCTION FOR GRAVITATIONAL LENSING MAGNIFICATION BIAS
journal, May 2015

  • Mason, Charlotte A.; Treu, Tommaso; Schmidt, Kasper B.
  • The Astrophysical Journal, Vol. 805, Issue 1
  • DOI: 10.1088/0004-637X/805/1/79

Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos
journal, December 2001

  • Metcalf, R. Benton; Madau, Piero
  • The Astrophysical Journal, Vol. 563, Issue 1
  • DOI: 10.1086/323695

The SDSS-III BOSS quasar lens survey: discovery of 13 gravitationally lensed quasars
journal, December 2015

  • More, Anupreeta; Oguri, Masamune; Kayo, Issha
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 2
  • DOI: 10.1093/mnras/stv2813

The Dark Energy Survey Image Processing Pipeline
journal, May 2018

  • Morganson, E.; Gruendl, R. A.; Menanteau, F.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 989
  • DOI: 10.1088/1538-3873/aab4ef

Detection of substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231
journal, June 2014

  • Nierenberg, A. M.; Treu, T.; Wright, S. A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 3
  • DOI: 10.1093/mnras/stu862

Probing dark matter substructure in the gravitational lens HE 0435−1223 with the WFC3 grism
journal, June 2017

  • Nierenberg, A. M.; Treu, T.; Brammer, G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 2
  • DOI: 10.1093/mnras/stx1400

The Sloan Digital sky Survey Quasar lens Search. iii. Constraints on dark Energy from the Third data Release Quasar lens Catalog
journal, January 2008


An atlas of predicted exotic gravitational lenses
journal, October 2009


VDES J2325−5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning
journal, November 2016

  • Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw2958

The discovery of a five-image lensed quasar at z = 3.34 using PanSTARRS1 and Gaia
journal, October 2017

  • Ostrovski, Fernanda; Lemon, Cameron A.; Auger, Matthew W.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 473, Issue 1
  • DOI: 10.1093/mnrasl/slx173

Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts
journal, October 2006

  • Peng, Chien Y.; Impey, Chris D.; Rix, Hans‐Walter
  • The Astrophysical Journal, Vol. 649, Issue 2
  • DOI: 10.1086/506266

The Dark-Matter Fraction in the Elliptical Galaxy Lensing the Quasar pg 1115+080
journal, May 2009


On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect
journal, September 1964


Colors of 2625 Quasars at 0 < [ITAL][CLC]z[/CLC][/ITAL] < 5 Measured in the Sloan Digital Sky Survey Photometric System
journal, May 2001

  • Richards, Gordon T.; Fan, Xiaohui; Schneider, Donald P.
  • The Astronomical Journal, Vol. 121, Issue 5
  • DOI: 10.1086/320392

The 2dF-SDSS LRG and QSO (2SLAQ) Survey: the z < 2.1 quasar luminosity function from 5645 quasars to g = 21.85
journal, July 2005

  • Richards, Gordon T.; Croom, Scott M.; Anderson, Scott F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 360, Issue 3
  • DOI: 10.1111/j.1365-2966.2005.09096.x

The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3
journal, June 2006

  • Richards, Gordon T.; Strauss, Michael A.; Fan, Xiaohui
  • The Astronomical Journal, Vol. 131, Issue 6
  • DOI: 10.1086/503559

A 2.4% Determination of the Local Value of the Hubble Constant
journal, July 2016

  • Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.
  • The Astrophysical Journal, Vol. 826, Issue 1
  • DOI: 10.3847/0004-637X/826/1/56

New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope : Implications for the Hubble Constant
journal, March 2018

  • Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong
  • The Astrophysical Journal, Vol. 855, Issue 2
  • DOI: 10.3847/1538-4357/aaadb7

Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant
journal, July 2018

  • Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong
  • The Astrophysical Journal, Vol. 861, Issue 2
  • DOI: 10.3847/1538-4357/aac82e

H0LiCOW – III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435−1223 through weighted galaxy counts★
journal, February 2017

  • Rusu, Cristian E.; Fassnacht, Christopher D.; Sluse, Dominique
  • Monthly Notices of the Royal Astronomical Society, Vol. 467, Issue 4
  • DOI: 10.1093/mnras/stx285

The Quadruple Gravitational Lens PG 1115+080: Time Delays and Models
journal, February 1997

  • Schechter, Paul L.; Bailyn, Charles D.; Barr, Robert
  • The Astrophysical Journal, Vol. 475, Issue 2
  • DOI: 10.1086/310478

A CALIBRATION OF THE STELLAR MASS FUNDAMENTAL PLANE AT z ∼ 0.5 USING THE MICRO-LENSING-INDUCED FLUX RATIO ANOMALIES OF MACRO-LENSED QUASARS , ,
journal, September 2014

  • Schechter, Paul L.; Pooley, David; Blackburne, Jeffrey A.
  • The Astrophysical Journal, Vol. 793, Issue 2
  • DOI: 10.1088/0004-637X/793/2/96

First Lensed Quasar Systems from the VST-ATLAS Survey: One Quad, Two Doubles, and Two Pairs of Lensless Twins
journal, April 2017

  • Schechter, Paul L.; Morgan, Nicholas D.; Chehade, B.
  • The Astronomical Journal, Vol. 153, Issue 5
  • DOI: 10.3847/1538-3881/aa6899

Improving time-delay cosmography with spatially resolved kinematics
journal, September 2017

  • Shajib, Anowar J.; Treu, Tommaso; Agnello, Adriano
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 1
  • DOI: 10.1093/mnras/stx2302

H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435−1223
journal, June 2017

  • Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 4
  • DOI: 10.1093/mnras/stx1484

KiDS-SQuaD: The KiDS Strongly lensed Quasar Detection project
journal, July 2018

  • Spiniello, C.; Agnello, A.; Napolitano, N. R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 1
  • DOI: 10.1093/mnras/sty1923

Two Accurate Time-Delay Distances from Strong Lensing: Implications for Cosmology
journal, March 2013


Cosmology from Gravitational lens time Delays and Planck data
journal, June 2014


H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview
journal, February 2017

  • Suyu, S. H.; Bonvin, V.; Courbin, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 3
  • DOI: 10.1093/mnras/stx483

Microlensing makes lensed quasar time delays significantly time variable
journal, September 2017

  • Tie, S. S.; Kochanek, C. S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 1
  • DOI: 10.1093/mnras/stx2348

Strong Lensing by Galaxies
journal, August 2010


The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant
journal, September 2002


Time delay cosmography
journal, July 2016


The Sloan Lens ACS Survey. II. Stellar Populations and Internal Structure of Early‐Type Lens Galaxies
journal, April 2006

  • Treu, Tommaso; Koopmans, Leon V.; Bolton, Adam S.
  • The Astrophysical Journal, Vol. 640, Issue 2
  • DOI: 10.1086/500124

The statistics of gravitational lenses - The distributions of image angular separations and lens redshifts
journal, September 1984

  • Turner, E. L.; Ostriker, J. P.; Gott, J. R. , Iii
  • The Astrophysical Journal, Vol. 284
  • DOI: 10.1086/162379

scikit-image: image processing in Python
journal, January 2014

  • van der Walt, Stéfan; Schönberger, Johannes L.; Nunez-Iglesias, Juan
  • PeerJ, Vol. 2
  • DOI: 10.7717/peerj.453

Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses
journal, June 2014

  • Vegetti, S.; Koopmans, L. V. E.; Auger, M. W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 3
  • DOI: 10.1093/mnras/stu943

0957 + 561 A, B: twin quasistellar objects or gravitational lens?
journal, May 1979

  • Walsh, D.; Carswell, R. F.; Weymann, R. J.
  • Nature, Vol. 279, Issue 5712
  • DOI: 10.1038/279381a0

Uncondensed Matter in the Universe: Optical Evidence from Quasar Absorption Lines [and Discussion]
journal, March 1980

  • Weymann, R. J.; Wolfendale, A. W.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 296, Issue 1419
  • DOI: 10.1098/rsta.1980.0184

Population mixtures and searches of lensed and extended quasars across photometric surveys
journal, December 2016

  • Williams, Peter; Agnello, Adriano; Treu, Tommaso
  • Monthly Notices of the Royal Astronomical Society, Vol. 466, Issue 3
  • DOI: 10.1093/mnras/stw3239

Discovery of three strongly lensed quasars in the Sloan Digital Sky Survey
journal, March 2018

  • Williams, P. R.; Agnello, A.; Treu, T.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 477, Issue 1
  • DOI: 10.1093/mnrasl/sly043

H0LiCOW – IV. Lens mass model of HE 0435−1223 and blind measurement of its time-delay distance for cosmology
journal, November 2016

  • Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw3077

Works referencing / citing this record:

The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae
journal, August 2019


Strong gravitational lensing of explosive transients
journal, November 2019


Gravitationally lensed quasars in Gaia – III. 22 new lensed quasars from Gaia data release 2
journal, December 2018

  • Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 3
  • DOI: 10.1093/mnras/sty3366

Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars
journal, December 2018

  • Shajib, A. J.; Birrer, S.; Treu, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 4
  • DOI: 10.1093/mnras/sty3397

Bright lenses are easy to find: spectroscopic confirmation of lensed quasars in the Southern Sky
journal, December 2018

  • Spiniello, C.; Agnello, A.; Sergeyev, A. V.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 3
  • DOI: 10.1093/mnras/sty3407

Assessing the effect of lens mass model in cosmological application with updated galaxy-scale strong gravitational lensing sample
journal, July 2019

  • Chen, Yun; Li, Ran; Shu, Yiping
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 3
  • DOI: 10.1093/mnras/stz1902

H0LiCOW – IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant
journal, January 2019

  • Birrer, S.; Treu, T.; Rusu, C. E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 4
  • DOI: 10.1093/mnras/stz200

Quasar lenses in the south: searches over the DES public footprint
journal, August 2019

  • Agnello, Adriano; Spiniello, Chiara
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
  • DOI: 10.1093/mnras/stz2200

A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging
journal, September 2019

  • Chen, Geoff C-F; Fassnacht, Christopher D.; Suyu, Sherry H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 2
  • DOI: 10.1093/mnras/stz2547

Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism
journal, December 2019

  • Nierenberg, A. M.; Gilman, D.; Treu, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 492, Issue 4
  • DOI: 10.1093/mnras/stz3588

The Cosmic Distance Duality Relation with Strong Lensing and Gravitational Waves: An Opacity-free Test
journal, October 2019


A Model-independent Determination of the Hubble Constant from Lensed Quasars and Supernovae Using Gaussian Process Regression
journal, November 2019

  • Liao, Kai; Shafieloo, Arman; Keeley, Ryan E.
  • The Astrophysical Journal, Vol. 886, Issue 1
  • DOI: 10.3847/2041-8213/ab5308

Quasar Lenses in the South: searches over the DES public footprint
text, January 2018


A SHARP view of H0LiCOW: $H_{0}$ from three time-delay gravitational lens systems with adaptive optics imaging
text, January 2019