DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g-1

Abstract

We report that Si/Ge core/shell nanowire heterostructures have been expected to provide high energy and power densities for lithium ion battery anodes due to the large capacity of Si and the high electrical and ionic conductivities of Ge. Although the battery anode performances of Si/Ge core/shell nanowire heterostructures have been characterized, the degradation of Si/Ge core/shell nanowire heterostructures has not been thoroughly investigated. Here we report the compositional and structural changes of the Si/Ge core/shell nanowire heterostructure over cycling of lithiation and delithiation at different charging rates. The Si/Ge core/shell nanowire heterostructure holds the core and shell structure at a charging rate of 0.8 A g-1 up to 50 cycles. On the other hand, compositional intermixing and loss of Si occur at a charging rate of 20 A g-1 within 50 cycles. Lastly, the operation condition-dependent degradation provides a new aspect of materials research for the development of high performance lithium ion battery anodes with a long cycle life.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1469549
Alternate Identifier(s):
OSTI ID: 1434161
Report Number(s):
LA-UR-18-21413
Journal ID: ISSN 2040-3364; NANOHL
Grant/Contract Number:  
AC52-06NA25396; AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 10; Journal Issue: 16; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Silicon; Germanium; Nanowire; Core/shell; intermixing; lithium ion battery anodes; degradation

Citation Formats

Kim, Dongheun, Li, Nan, Sheehan, Chris J., and Yoo, Jinkyoung. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g-1. United States: N. p., 2018. Web. doi:10.1039/C8NR00865E.
Kim, Dongheun, Li, Nan, Sheehan, Chris J., & Yoo, Jinkyoung. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g-1. United States. https://doi.org/10.1039/C8NR00865E
Kim, Dongheun, Li, Nan, Sheehan, Chris J., and Yoo, Jinkyoung. Wed . "Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g-1". United States. https://doi.org/10.1039/C8NR00865E. https://www.osti.gov/servlets/purl/1469549.
@article{osti_1469549,
title = {Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g-1},
author = {Kim, Dongheun and Li, Nan and Sheehan, Chris J. and Yoo, Jinkyoung},
abstractNote = {We report that Si/Ge core/shell nanowire heterostructures have been expected to provide high energy and power densities for lithium ion battery anodes due to the large capacity of Si and the high electrical and ionic conductivities of Ge. Although the battery anode performances of Si/Ge core/shell nanowire heterostructures have been characterized, the degradation of Si/Ge core/shell nanowire heterostructures has not been thoroughly investigated. Here we report the compositional and structural changes of the Si/Ge core/shell nanowire heterostructure over cycling of lithiation and delithiation at different charging rates. The Si/Ge core/shell nanowire heterostructure holds the core and shell structure at a charging rate of 0.8 A g-1 up to 50 cycles. On the other hand, compositional intermixing and loss of Si occur at a charging rate of 20 A g-1 within 50 cycles. Lastly, the operation condition-dependent degradation provides a new aspect of materials research for the development of high performance lithium ion battery anodes with a long cycle life.},
doi = {10.1039/C8NR00865E},
journal = {Nanoscale},
number = 16,
volume = 10,
place = {United States},
year = {Wed Mar 28 00:00:00 EDT 2018},
month = {Wed Mar 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries
journal, January 2007

  • Larcher, Dominique; Beattie, Shane; Morcrette, Mathieu
  • Journal of Materials Chemistry, Vol. 17, Issue 36
  • DOI: 10.1039/b705421c

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by in Situ Transmission Electron Microscopy
journal, February 2014

  • Abellan, Patricia; Mehdi, B. Layla; Parent, Lucas R.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404271k

Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability
journal, June 2015

  • Kennedy, Tadhg; Bezuidenhout, Michael; Palaniappan, Kumaranand
  • ACS Nano, Vol. 9, Issue 7
  • DOI: 10.1021/acsnano.5b02528

Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction
journal, December 2011

  • Li, Juchuan; Xiao, Xingcheng; Yang, Fuqian
  • The Journal of Physical Chemistry C, Vol. 116, Issue 1
  • DOI: 10.1021/jp207919q

Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation
journal, May 2014

  • Cho, Jeong-Hyun; Picraux, S. Tom
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500130e

Germanium coating boosts lithium uptake in Si nanotube battery anodes
journal, January 2014

  • Haro, Marta; Song, Taeseup; Guerrero, Antonio
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 33
  • DOI: 10.1039/C4CP02377C

Engineering Heteromaterials to Control Lithium Ion Transport Pathways
journal, December 2015

  • Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep18482

Bubble and Pattern Formation in Liquid Induced by an Electron Beam
journal, December 2013

  • Grogan, Joseph M.; Schneider, Nicholas M.; Ross, Frances M.
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl404169a

Si/Ge core–shell nanoarrays as the anode material for 3D lithium ion batteries
journal, January 2013

  • Li, Jing; Yue, Chuang; Yu, Yingjian
  • Journal of Materials Chemistry A, Vol. 1, Issue 45
  • DOI: 10.1039/c3ta13537c

Germanium Silicon Alloy Anode Material Capable of Tunable Overpotential by Nanoscale Si Segregation
journal, May 2015


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Understanding the lithiation/delithiation mechanism of Si 1−x Ge x alloys
journal, January 2017

  • Loaiza, Laura C.; Salager, Elodie; Louvain, Nicolas
  • Journal of Materials Chemistry A, Vol. 5, Issue 24
  • DOI: 10.1039/C7TA02100C

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics
journal, September 2015

  • Lu, Xiaotang; Bogart, Timothy D.; Gu, Meng
  • The Journal of Physical Chemistry C, Vol. 119, Issue 38
  • DOI: 10.1021/acs.jpcc.5b06386

Nanostructured Si (1- x ) Ge x for Tunable Thin Film Lithium-Ion Battery Anodes
journal, March 2013

  • Abel, Paul R.; Chockla, Aaron M.; Lin, Yong-Mao
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn3053632

Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy
journal, February 2015

  • Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.
  • ACS Nano, Vol. 9, Issue 4
  • DOI: 10.1021/acsnano.5b00876

Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries
journal, January 2015

  • Ngo, Duc Tung; Le, Hang T. T.; Kim, Chanhoon
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE02183A

Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale
journal, September 2013

  • Liu, Yang; Liu, Xiao Hua; Nguyen, Binh-Minh
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl4027549

Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes
journal, June 2011

  • Liu, Xiao Hua; Zhang, Li Qiang; Zhong, Li
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200412p

Twin Plane Re-entrant Mechanism for Catalytic Nanowire Growth
journal, February 2014

  • Gamalski, Andrew D.; Voorhees, Peter W.; Ducati, Caterina
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404244u

The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity
journal, May 2012


Lamellar Twinning in Semiconductor Nanowires
journal, January 2007

  • Davidson, Forrest M.; Lee, Doh C.; Fanfair, Dayne D.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 7
  • DOI: 10.1021/jp0672205

Opportunities and challenges in liquid cell electron microscopy
journal, December 2015


Facet-Selective Nucleation and Conformal Epitaxy of Ge Shells on Si Nanowires
journal, October 2015


Si/Ge Double-Layered Nanotube Array as a Lithium Ion Battery Anode
journal, December 2011

  • Song, Taeseup; Cheng, Huanyu; Choi, Heechae
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn203572n

Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study
journal, January 2009

  • Baggetto, Loïc; Notten, Peter H. L.
  • Journal of The Electrochemical Society, Vol. 156, Issue 3
  • DOI: 10.1149/1.3055984

In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon
journal, January 2004

  • Hatchard, T. D.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1739217

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM
journal, December 2016

  • Lu, Xiaotang; He, Yang; Mao, Scott X.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 50
  • DOI: 10.1021/acs.jpcc.6b10174

Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities
journal, January 2004

  • Graetz, J.; Ahn, C. C.; Yazami, R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 5
  • DOI: 10.1149/1.1697412

High-performance lithium battery anodes using silicon nanowires
book, October 2010

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, p. 187-191
  • DOI: 10.1142/9789814317665_0026

Works referencing / citing this record:

Structural Strategies for Germanium‐Based Anode Materials to Enhance Lithium Storage
journal, August 2019

  • Hao, Jian; Wang, Yanxia; Guo, Qingjie
  • Particle & Particle Systems Characterization, Vol. 36, Issue 9
  • DOI: 10.1002/ppsc.201900248