DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments

Abstract

© 2017 American Chemical Society. The solar photoelectrochemical generation of hydrogen and carbon-containing fuels comprises a critical energy technology for establishing sustainable energy resources. The photoanode, which is responsible for solar-driven oxygen evolution, has persistently limited technology advancement due to the lack of materials that exhibit both the requisite electronic properties and operational stability. Efforts to extend the lifetime of solar fuel devices increasingly focus on mitigating corrosion in the highly oxidizing oxygen evolution environment, motivating our development of a photoanode discovery pipeline that combines electronic structure calculations, Pourbaix stability screening, and high-throughput experiments. By applying the pipeline to ternary metal oxides containing manganese, we identify a promising class of corrosion-resistant materials and discover five oxygen evolution photoanodes, including the first demonstration of photoelectrocatalysis with Mn-based ternary oxides and the introduction of alkaline earth manganates as promising photoanodes for establishing a durable solar fuels technology.

Authors:
 [1]; ORCiD logo [1];  [2];  [1];  [3];  [4];  [5];  [6]; ORCiD logo [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry; Univ. of California, Berkeley, CA (United States). Dept. of Physics; Temple Univ., Philadelphia, PA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
  4. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP); Temple Univ., Philadelphia, PA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division and Joint Center for Artificial Photosynthesis (JCAP)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry and Joint Center for Artificial Photosynthesis (JCAP); Univ. of California, Berkeley, CA (United States). Kavli Energy NanoSciences Inst. and Dept. of Physics
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
Contributing Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
OSTI Identifier:
1468640
Alternate Identifier(s):
OSTI ID: 1476554
Grant/Contract Number:  
SC0004993; EDCBEE; AC02-05CH11231; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 2; Journal Issue: 10; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
10 SYNTHETIC FUELS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Shinde, Aniketa, Suram, Santosh K., Yan, Qimin, Zhou, Lan, Singh, Arunima K., Yu, Jie, Persson, Kristin A., Neaton, Jeffrey B., and Gregoire, John M. Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. United States: N. p., 2017. Web. doi:10.1021/acsenergylett.7b00607.
Shinde, Aniketa, Suram, Santosh K., Yan, Qimin, Zhou, Lan, Singh, Arunima K., Yu, Jie, Persson, Kristin A., Neaton, Jeffrey B., & Gregoire, John M. Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. United States. https://doi.org/10.1021/acsenergylett.7b00607
Shinde, Aniketa, Suram, Santosh K., Yan, Qimin, Zhou, Lan, Singh, Arunima K., Yu, Jie, Persson, Kristin A., Neaton, Jeffrey B., and Gregoire, John M. Thu . "Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments". United States. https://doi.org/10.1021/acsenergylett.7b00607. https://www.osti.gov/servlets/purl/1468640.
@article{osti_1468640,
title = {Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments},
author = {Shinde, Aniketa and Suram, Santosh K. and Yan, Qimin and Zhou, Lan and Singh, Arunima K. and Yu, Jie and Persson, Kristin A. and Neaton, Jeffrey B. and Gregoire, John M.},
abstractNote = {© 2017 American Chemical Society. The solar photoelectrochemical generation of hydrogen and carbon-containing fuels comprises a critical energy technology for establishing sustainable energy resources. The photoanode, which is responsible for solar-driven oxygen evolution, has persistently limited technology advancement due to the lack of materials that exhibit both the requisite electronic properties and operational stability. Efforts to extend the lifetime of solar fuel devices increasingly focus on mitigating corrosion in the highly oxidizing oxygen evolution environment, motivating our development of a photoanode discovery pipeline that combines electronic structure calculations, Pourbaix stability screening, and high-throughput experiments. By applying the pipeline to ternary metal oxides containing manganese, we identify a promising class of corrosion-resistant materials and discover five oxygen evolution photoanodes, including the first demonstration of photoelectrocatalysis with Mn-based ternary oxides and the introduction of alkaline earth manganates as promising photoanodes for establishing a durable solar fuels technology.},
doi = {10.1021/acsenergylett.7b00607},
journal = {ACS Energy Letters},
number = 10,
volume = 2,
place = {United States},
year = {Thu Sep 07 00:00:00 EDT 2017},
month = {Thu Sep 07 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Tiered screening pipeline for accelerated discovery of solar fuels photoanodes. The number of compounds (bold) and screening criteria used in this study for the seven-tier pipeline that integrates database mining (gray), high throughput computational screening (blue), and high throughput experimental screening (yellow).

Save / Share:

Works referenced in this record:

Electronic Structure, Optoelectronic Properties, and Photoelectrochemical Characteristics of γ-Cu 3 V 2 O 8 Thin Films
journal, March 2017


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures
journal, January 2016

  • Najafpour, Mohammad Mahdi; Renger, Gernot; Hołyńska, Małgorzata
  • Chemical Reviews, Vol. 116, Issue 5
  • DOI: 10.1021/acs.chemrev.5b00340

Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation
journal, January 2016

  • Zhou, Lan; Yan, Qimin; Yu, Jie
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 14
  • DOI: 10.1039/C6CP00473C

Semiconductor Electrodes
journal, January 1976

  • Hardee, Kenneth L.
  • Journal of The Electrochemical Society, Vol. 123, Issue 7
  • DOI: 10.1149/1.2132984

High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V 2 O 5 System
journal, August 2015

  • Zhou, Lan; Yan, Qimin; Shinde, Aniketa
  • Advanced Energy Materials, Vol. 5, Issue 22
  • DOI: 10.1002/aenm.201500968

Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation
journal, March 2016


Thin Films of Sodium Birnessite-Type MnO 2 : Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry
journal, May 2011

  • Pinaud, Blaise A.; Chen, Zhebo; Abram, David N.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 23
  • DOI: 10.1021/jp200015p

Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution
journal, September 2012

  • Chen, Shiyou; Wang, Lin-Wang
  • Chemistry of Materials, Vol. 24, Issue 18
  • DOI: 10.1021/cm302533s

Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment
journal, March 2017

  • Yan, Qimin; Yu, Jie; Suram, Santosh K.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 12
  • DOI: 10.1073/pnas.1619940114

Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional
journal, November 2005

  • Heyd, Jochen; Peralta, Juan E.; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 123, Issue 17
  • DOI: 10.1063/1.2085170

Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO 4
journal, January 2016

  • Guevarra, D.; Shinde, A.; Suram, S. K.
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE03488D

Synthesis of Ca2Mn3O8 films and their electrochemical studies for the oxygen evolution reaction (OER) of water
journal, March 2012


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4
journal, May 2002

  • Valenzuela, M. A.; Bosch, P.; Jiménez-Becerrill, J.
  • Journal of Photochemistry and Photobiology A: Chemistry, Vol. 148, Issue 1-3
  • DOI: 10.1016/S1010-6030(02)00040-0

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
journal, June 2006

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 124, Issue 21
  • DOI: 10.1063/1.2204597

Enhanced Photoelectrochemical Performance of Porous Bi 2 MoO 6 Photoanode by an Electrochemical Treatment
journal, January 2017

  • Tang, Ding; Mabayoje, Oluwaniyi; Lai, Yanqing
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.0271706jes

Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review
journal, July 2017


Photoelectrochemical properties of ferrites with the spinel structure
journal, June 1985


Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis
journal, January 2017

  • Zachäus, Carolin; Abdi, Fatwa F.; Peter, Laurence M.
  • Chemical Science, Vol. 8, Issue 5
  • DOI: 10.1039/C7SC00363C

Assessing capability of semiconductors to split water using ionization potentials and electron affinities only
journal, January 2014

  • Stevanović, Vladan; Lany, Stephan; Ginley, David S.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 8
  • DOI: 10.1039/c3cp54589j

All First Row Transition Metal Oxide Photoanode for Water Splitting Based on Cu 3 V 2 O 8
journal, January 2015

  • Seabold, Jason A.; Neale, Nathan R.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504327f

Using nickel manganese oxide catalysts for efficient water oxidation
journal, January 2015

  • Menezes, Prashanth W.; Indra, Arindam; Levy, Ophir
  • Chemical Communications, Vol. 51, Issue 24
  • DOI: 10.1039/C4CC09671A

Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides
journal, July 2013

  • Maitra, U.; Naidu, B. S.; Govindaraj, A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 29
  • DOI: 10.1073/pnas.1310703110

Mechano-Thermal Synthesis and Characterization of BaMnO3 Nano-Needles
journal, August 2015

  • Balamurugan, S.; Mini, K. S. Asha; Raja, T. S. Gokul
  • Journal of Nanoscience and Nanotechnology, Vol. 15, Issue 8
  • DOI: 10.1166/jnn.2015.10196

Architecture of the Photosynthetic Oxygen-Evolving Center
journal, March 2004


Enhanced photo-electrochemical water oxidation on MnO x in buffered organic/inorganic electrolytes
journal, January 2015

  • Zhou, Fengling; McDonnell-Worth, Ciaran; Li, Haitao
  • Journal of Materials Chemistry A, Vol. 3, Issue 32
  • DOI: 10.1039/C5TA03850B

Photocatalytic Degradation of Rhodamine B Using MnO2 and ZnO Nanoparticles
journal, May 2013


Works referencing / citing this record:

Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery
journal, January 2019

  • Singh, Arunima K.; Montoya, Joseph H.; Gregoire, John M.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08356-1

Computational Approaches to Photoelectrode Design through Molecular Functionalization for Enhanced Photoelectrochemical Water Splitting
journal, November 2018


Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes
journal, January 2018

  • Suram, Santosh K.; Zhou, Lan; Shinde, Aniketa
  • Chemical Communications, Vol. 54, Issue 36
  • DOI: 10.1039/c7cc08002f

Data-driven material discovery for photocatalysis: a short review
journal, July 2018


stk : A python toolkit for supramolecular assembly
journal, June 2018

  • Turcani, Lukas; Berardo, Enrico; Jelfs, Kim E.
  • Journal of Computational Chemistry, Vol. 39, Issue 23
  • DOI: 10.1002/jcc.25377

Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)O x composition and pH space
journal, January 2019

  • Stein, Helge S.; Guevarra, Dan; Shinde, Aniketa
  • Materials Horizons, Vol. 6, Issue 6
  • DOI: 10.1039/c8mh01641k

Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments
journal, January 2019

  • Noh, Juhwan; Kim, Sungwon; Gu, Geun ho
  • Chemical Communications, Vol. 55, Issue 89
  • DOI: 10.1039/c9cc06736a

Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery
journal, January 2019

  • Singh, Arunima K.; Montoya, Joseph H.; Gregoire, John M.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08356-1

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.