DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A physical catalyst for the electrolysis of nitrogen to ammonia

Abstract

Ammonia synthesis consumes 3 to 5% of the world’s natural gas, making it a significant contributor to greenhouse gas emissions. Strategies for synthesizing ammonia that are not dependent on the energy-intensive and methane-based Haber-Bosch process are critically important for reducing global energy consumption and minimizing climate change. Motivated by a need to investigate novel nitrogen fixation mechanisms, we herein describe a highly textured physical catalyst, composed of N-doped carbon nanospikes, that electrochemically reduces dissolved N2 gas to ammonia in an aqueous electrolyte under ambient conditions. The Faradaic efficiency (FE) achieves 11.56 ± 0.85% at –1.19 V versus the reversible hydrogen electrode, and the maximum production rate is 97.18 ± 7.13 μg hour–1 cm–2. The catalyst contains no noble or rare metals but rather has a surface composed of sharp spikes, which concentrates the electric field at the tips, thereby promoting the electroreduction of dissolved N2 molecules near the electrode. The choice of electrolyte is also critically important because the reaction rate is dependent on the counterion type, suggesting a role in enhancing the electric field at the sharp spikes and increasing N2 concentration within the Stern layer. In conclusion, the energy efficiency of the reaction is estimated to be 5.25%more » at the current FE of 11.56%.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  3. Georgia Inst. of Technology, Atlanta, GA (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1468286
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 4; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Song, Yang, Johnson, Daniel A., Peng, Rui, Hensley, Dale K., Bonnesen, Peter V., Liang, Liangbo, Huang, Jingsong, Yang, Fengchang, Zhang, Fei, Qiao, Rui, Baddorf, Arthur P., Tschaplinski, Timothy J., Engle, Nancy L., Hatzell, Marta C., Wu, Zili, Cullen, David A., Meyer, III, Harry M., Sumpter, Bobby G., and Rondinone, Adam Justin. A physical catalyst for the electrolysis of nitrogen to ammonia. United States: N. p., 2018. Web. doi:10.1126/sciadv.1700336.
Song, Yang, Johnson, Daniel A., Peng, Rui, Hensley, Dale K., Bonnesen, Peter V., Liang, Liangbo, Huang, Jingsong, Yang, Fengchang, Zhang, Fei, Qiao, Rui, Baddorf, Arthur P., Tschaplinski, Timothy J., Engle, Nancy L., Hatzell, Marta C., Wu, Zili, Cullen, David A., Meyer, III, Harry M., Sumpter, Bobby G., & Rondinone, Adam Justin. A physical catalyst for the electrolysis of nitrogen to ammonia. United States. https://doi.org/10.1126/sciadv.1700336
Song, Yang, Johnson, Daniel A., Peng, Rui, Hensley, Dale K., Bonnesen, Peter V., Liang, Liangbo, Huang, Jingsong, Yang, Fengchang, Zhang, Fei, Qiao, Rui, Baddorf, Arthur P., Tschaplinski, Timothy J., Engle, Nancy L., Hatzell, Marta C., Wu, Zili, Cullen, David A., Meyer, III, Harry M., Sumpter, Bobby G., and Rondinone, Adam Justin. Fri . "A physical catalyst for the electrolysis of nitrogen to ammonia". United States. https://doi.org/10.1126/sciadv.1700336. https://www.osti.gov/servlets/purl/1468286.
@article{osti_1468286,
title = {A physical catalyst for the electrolysis of nitrogen to ammonia},
author = {Song, Yang and Johnson, Daniel A. and Peng, Rui and Hensley, Dale K. and Bonnesen, Peter V. and Liang, Liangbo and Huang, Jingsong and Yang, Fengchang and Zhang, Fei and Qiao, Rui and Baddorf, Arthur P. and Tschaplinski, Timothy J. and Engle, Nancy L. and Hatzell, Marta C. and Wu, Zili and Cullen, David A. and Meyer, III, Harry M. and Sumpter, Bobby G. and Rondinone, Adam Justin},
abstractNote = {Ammonia synthesis consumes 3 to 5% of the world’s natural gas, making it a significant contributor to greenhouse gas emissions. Strategies for synthesizing ammonia that are not dependent on the energy-intensive and methane-based Haber-Bosch process are critically important for reducing global energy consumption and minimizing climate change. Motivated by a need to investigate novel nitrogen fixation mechanisms, we herein describe a highly textured physical catalyst, composed of N-doped carbon nanospikes, that electrochemically reduces dissolved N2 gas to ammonia in an aqueous electrolyte under ambient conditions. The Faradaic efficiency (FE) achieves 11.56 ± 0.85% at –1.19 V versus the reversible hydrogen electrode, and the maximum production rate is 97.18 ± 7.13 μg hour–1 cm–2. The catalyst contains no noble or rare metals but rather has a surface composed of sharp spikes, which concentrates the electric field at the tips, thereby promoting the electroreduction of dissolved N2 molecules near the electrode. The choice of electrolyte is also critically important because the reaction rate is dependent on the counterion type, suggesting a role in enhancing the electric field at the sharp spikes and increasing N2 concentration within the Stern layer. In conclusion, the energy efficiency of the reaction is estimated to be 5.25% at the current FE of 11.56%.},
doi = {10.1126/sciadv.1700336},
journal = {Science Advances},
number = 4,
volume = 4,
place = {United States},
year = {Fri Apr 27 00:00:00 EDT 2018},
month = {Fri Apr 27 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 232 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles
journal, November 2013

  • Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403524a

GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
journal, February 2008

  • Hess, Berk; Kutzner, Carsten; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 3
  • DOI: 10.1021/ct700301q

Separation of Gases by Pressure Swin
journal, July 1991

  • Jasra, R. V.; Choudary, N. V.; Bhat, S. G. T.
  • Separation Science and Technology, Vol. 26, Issue 7
  • DOI: 10.1080/01496399108050504

Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure
journal, January 2003

  • Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki
  • Journal of the American Chemical Society, Vol. 125, Issue 2
  • DOI: 10.1021/ja028891t

Propagators in Quantum Chemistry
book, March 2004


Bridging the "Pressure Gap" between Ultrahigh-Vacuum Surface Physics and High-Pressure Catalysis
journal, November 1985


Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure.
journal, May 2003

  • Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki
  • ChemInform, Vol. 34, Issue 18
  • DOI: 10.1002/chin.200318020

Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon
journal, January 2012

  • Zhang, Li Li; Zhao, Xin; Ji, Hengxing
  • Energy & Environmental Science, Vol. 5, Issue 11, p. 9618-9625
  • DOI: 10.1039/c2ee23442d

Review of electrochemical ammonia production technologies and materials
journal, November 2013


Nitrogen electrochemically reduced to ammonia with hematite: density-functional insights
journal, January 2015

  • Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 22
  • DOI: 10.1039/C4CP04308A

The work function of emersed electrodes
journal, June 1979

  • Hansen, W. N.; Kolb, D. M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 100, Issue 1-2
  • DOI: 10.1016/S0022-0728(79)80180-1

High-Selectivity Electrochemical Conversion of CO 2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode
journal, September 2016


Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell
journal, January 2000

  • Kordali, V.; Kyriacou, G.; Lambrou, Ch.
  • Chemical Communications, Issue 17
  • DOI: 10.1039/b004885m

Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties
journal, May 2009

  • Wei, Dacheng; Liu, Yunqi; Wang, Yu
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl803279t

Silver Leakage from Ag/AgCl Reference Electrodes as a Potential Cause of Interference in the Electrocatalytic Hydrogen Evolution Reaction
journal, December 2016

  • Roger, Isolda; Symes, Mark D.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 1
  • DOI: 10.1021/acsami.6b13438

Challenges in reduction of dinitrogen by proton and electron transfer
journal, January 2014

  • van der Ham, Cornelis J. M.; Koper, Marc T. M.; Hetterscheid, Dennis G. H.
  • Chem. Soc. Rev., Vol. 43, Issue 15
  • DOI: 10.1039/C4CS00085D

Observation of systematic electrochemically induced binding energy shift in the XPS spectra of emersed Cs+ double layer species
journal, January 1986


Synthesis of ammonia directly from air and water at ambient temperature and pressure
journal, January 2013

  • Lan, Rong; Irvine, John T. S.; Tao, Shanwen
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01145

Dinitrogen Electrochemical Reduction to Ammonia over Iron Cathode in Aqueous Medium
journal, January 1983

  • Sclafani, A.
  • Journal of The Electrochemical Society, Vol. 130, Issue 3
  • DOI: 10.1149/1.2119794

Towards an ammonia-mediated hydrogen economy?
journal, January 2006


Lithium-mediated electrochemical reduction of high pressure N2 to NH3
journal, March 1994

  • Tsuneto, Akira; Kudo, Akihiko; Sakata, Tadayoshi
  • Journal of Electroanalytical Chemistry, Vol. 367, Issue 1-2
  • DOI: 10.1016/0022-0728(93)03025-K

Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum: Theory versus Experiment
journal, June 2008

  • Schrock, Richard R.
  • Angewandte Chemie International Edition, Vol. 47, Issue 30
  • DOI: 10.1002/anie.200705246

Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
journal, June 2013

  • Zhu, Di; Zhang, Linghong; Ruther, Rose E.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3696

Recent progress towards the electrosynthesis of ammonia from sustainable resources
journal, May 2017


Nonempirical calculation of the hydrogen, nitrogen, and oxygen molecules in the field of a strong point charge
journal, January 1977

  • Gerasimchuk, A. I.; Zhogolev, D. A.
  • Theoretical and Experimental Chemistry, Vol. 13, Issue 1
  • DOI: 10.1007/BF00524824

Optimized intermolecular potential functions for liquid alcohols
journal, March 1986

  • Jorgensen, William L.
  • The Journal of Physical Chemistry, Vol. 90, Issue 7
  • DOI: 10.1021/j100398a015

Low overpotential reduction of dinitrogen to ammonia in aqueous media
journal, January 2010


State‐selective ionization of nitrogen in the X2 Σ + g v + =0 and v + =1 states by two‐color (1+ 1) photon excitation near threshold
journal, November 1989

  • Trickl, T.; Cromwell, E. F.; Lee, Y. T.
  • The Journal of Chemical Physics, Vol. 91, Issue 10
  • DOI: 10.1063/1.457417

Growth and Electrochemical Characterization of Carbon Nanospike Thin Film Electrodes
journal, January 2014

  • Sheridan, Leah B.; Hensley, Dale K.; Lavrik, Nickolay V.
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0891409jes

Electrochemical conversion of dinitrogen to ammonia mediated by a complex of fullerene C 60 and γ-cyclodextrin
journal, January 2007

  • Pospíšil, Lubomír; Bulíčková, Jana; Hromadová, Magdaléna
  • Chem. Commun., Issue 22
  • DOI: 10.1039/B701017F

Observation of systematic electrochemically induced binding energy shift in the XPS spectra of emersed Cs+ double layer species
journal, January 1986


Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
journal, August 2010

  • Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent
  • Journal of Materials Research, Vol. 25, Issue 8
  • DOI: 10.1557/JMR.2010.0195

Modeling of N2 and O2 Adsorption in Zeolites
journal, August 1995

  • Papai, Imre; Goursot, Annick; Fajula, Francois
  • The Journal of Physical Chemistry, Vol. 99, Issue 34
  • DOI: 10.1021/j100034a035

Improvement of Barrier Anodic Oxide Al2O3 Passivation of Aluminum Alloy for LSI/FPD Plasma Process Equipment
conference, January 2009

  • Tahara, Minoru; Kasase, Yasuhiro; Kitano, Masafumi
  • 214th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3091908

Using ammonia as a sustainable fuel
journal, October 2008


Vibrations and dissociation of molecules in strong electric fields: N2, NACl, H2O and SF6
journal, August 1998


On Arising Nanohydrides in Reduced Alkaline Solution
journal, January 2013


Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25 °C
journal, January 1996

  • Lee, Song Hi; Rasaiah, Jayendran C.
  • The Journal of Physical Chemistry, Vol. 100, Issue 4
  • DOI: 10.1021/jp953050c

LINCS: A linear constraint solver for molecular simulations
journal, September 1997


Interaction of Molecular Nitrogen and Oxygen with Extraframework Cations in Zeolites with Double Six-Membered Rings of Oxygen-Bridged Silicon and Aluminum Atoms:  A DFT Study
journal, June 2005

  • Mikosch, Hans; Uzunova, Ellie L.; St. Nikolov, Georgi
  • The Journal of Physical Chemistry B, Vol. 109, Issue 22
  • DOI: 10.1021/jp0451795

Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
journal, August 2016


Porous C 3 N 4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution
journal, January 2015

  • Duan, Jingjing; Chen, Sheng; Jaroniec, Mietek
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn506701x

The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide
journal, January 2013

  • Kumar, Priyank V.; Bernardi, Marco; Grossman, Jeffrey C.
  • ACS Nano, Vol. 7, Issue 2, p. 1638-1645
  • DOI: 10.1021/nn305507p

Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3
journal, August 2014


Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation
journal, August 2016

  • Wang, Peikun; Chang, Fei; Gao, Wenbo
  • Nature Chemistry, Vol. 9, Issue 1
  • DOI: 10.1038/nchem.2595

Adsorption of nitrogen-oxygen mixture in NaCaA zeolites by elution chromatography
journal, March 1993

  • Choudary, Venkateswarlu N.; Jasra, Raksh V.; Bhat, Thirumaleswara S. G.
  • Industrial & Engineering Chemistry Research, Vol. 32, Issue 3
  • DOI: 10.1021/ie00015a018

Wind to Ammonia: Electrochemical Processes in Room Temperature Ionic Liquids
conference, January 2009

  • Pappenfus, Ted M.; Lee, Kyung-mee; Thoma, Laura M.
  • 214th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3159311

A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction
journal, January 2012

  • Skúlason, Egill; Bligaard, Thomas; Gudmundsdóttir, Sigrídur
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 3
  • DOI: 10.1039/C1CP22271F

LINCS: A linear constraint solver for molecular simulations
journal, September 1997


Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure.
journal, May 2003

  • Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki
  • ChemInform, Vol. 34, Issue 18
  • DOI: 10.1002/chin.200318020

Review of electrochemical ammonia production technologies and materials
journal, November 2013


Low overpotential reduction of dinitrogen to ammonia in aqueous media
journal, January 2010


Using ammonia as a sustainable fuel
journal, October 2008


An ESCA study on emersed electrodes
journal, July 1980

  • Hansen, W. N.; Kolb, D. M.; Rath, D. L.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 110, Issue 1-3
  • DOI: 10.1016/s0022-0728(80)80391-3

Adsorption of nitrogen-oxygen mixture in NaCaA zeolites by elution chromatography
journal, March 1993

  • Choudary, Venkateswarlu N.; Jasra, Raksh V.; Bhat, Thirumaleswara S. G.
  • Industrial & Engineering Chemistry Research, Vol. 32, Issue 3
  • DOI: 10.1021/ie00015a018

Modeling of N2 and O2 Adsorption in Zeolites
journal, August 1995

  • Papai, Imre; Goursot, Annick; Fajula, Francois
  • The Journal of Physical Chemistry, Vol. 99, Issue 34
  • DOI: 10.1021/j100034a035

Interaction of Molecular Nitrogen and Oxygen with Extraframework Cations in Zeolites with Double Six-Membered Rings of Oxygen-Bridged Silicon and Aluminum Atoms:  A DFT Study
journal, June 2005

  • Mikosch, Hans; Uzunova, Ellie L.; St. Nikolov, Georgi
  • The Journal of Physical Chemistry B, Vol. 109, Issue 22
  • DOI: 10.1021/jp0451795

Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles
journal, November 2013

  • Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403524a

Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties
journal, May 2009

  • Wei, Dacheng; Liu, Yunqi; Wang, Yu
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl803279t

The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide
journal, January 2013

  • Kumar, Priyank V.; Bernardi, Marco; Grossman, Jeffrey C.
  • ACS Nano, Vol. 7, Issue 2, p. 1638-1645
  • DOI: 10.1021/nn305507p

Porous C 3 N 4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution
journal, January 2015

  • Duan, Jingjing; Chen, Sheng; Jaroniec, Mietek
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn506701x

Separation of Gases by Pressure Swin
journal, July 1991

  • Jasra, R. V.; Choudary, N. V.; Bhat, S. G. T.
  • Separation Science and Technology, Vol. 26, Issue 7
  • DOI: 10.1080/01496399108050504

Retraction
journal, August 2020


Dinitrogen Electrochemical Reduction to Ammonia over Iron Cathode in Aqueous Medium
journal, January 1983

  • Sclafani, A.
  • Journal of The Electrochemical Society, Vol. 130, Issue 3
  • DOI: 10.1149/1.2119794

Works referencing / citing this record:

Adsorbing and Activating N 2 on Heterogeneous Au–Fe 3 O 4 Nanoparticles for N 2 Fixation
journal, November 2019

  • Zhang, Jin; Ji, Yujin; Wang, Pengtang
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201906579

Enhanced Electrocatalytic N 2 Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites
journal, July 2019

  • Qin, Qing; Zhao, Yun; Schmallegger, Max
  • Angewandte Chemie International Edition, Vol. 58, Issue 37
  • DOI: 10.1002/anie.201906056

A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
journal, May 2019


Photoactive Earth‐Abundant Iron Pyrite Catalysts for Electrocatalytic Nitrogen Reduction Reaction
journal, October 2019


Defect Engineering Strategies for Nitrogen Reduction Reactions under Ambient Conditions
journal, October 2018


3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion
journal, March 2019


Synergistic bimetallic CoFe 2 O 4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia
journal, January 2019

  • Ahmed, Muhammad Ibrar; Chen, Sheng; Ren, Wenhao
  • Chemical Communications, Vol. 55, Issue 81
  • DOI: 10.1039/c9cc05684j

Bimetallic metal–organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions
journal, January 2020

  • Chen, Silong; Jang, Haeseong; Wang, Jia
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta10524g

Ambient electrochemical N 2 reduction to NH 3 under alkaline conditions enabled by a layered K 2 Ti 4 O 9 nanobelt
journal, January 2019

  • Wu, Dan; Wang, Huanbo; Huang, Hong
  • Chemical Communications, Vol. 55, Issue 52
  • DOI: 10.1039/c9cc02409c

Boron and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis
journal, January 2019

  • Kong, Yan; Li, Yan; Yang, Bin
  • Journal of Materials Chemistry A, Vol. 7, Issue 46
  • DOI: 10.1039/c9ta06076f

Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
journal, January 2019

  • Chen, Aling; Xia, Bao Yu
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta05505c

Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N 2 and H 2 O
journal, February 2020


Ambient electrohydrogenation of N 2 for NH 3 synthesis on non-metal boron phosphide nanoparticles: the critical role of P in boosting the catalytic activity
journal, January 2019

  • Zhu, Xiaojuan; Wu, Tongwei; Ji, Lei
  • Journal of Materials Chemistry A, Vol. 7, Issue 27
  • DOI: 10.1039/c9ta05016g

Advances in Electrocatalytic N 2 Reduction—Strategies to Tackle the Selectivity Challenge
journal, October 2018


Dendritic Cu: a high-efficiency electrocatalyst for N 2 fixation to NH 3 under ambient conditions
journal, January 2019

  • Li, Chengbo; Mou, Shiyong; Zhu, Xiaojuan
  • Chemical Communications, Vol. 55, Issue 96
  • DOI: 10.1039/c9cc08234d

Antimony‐Based Composites Loaded on Phosphorus‐Doped Carbon for Boosting Faradaic Efficiency of the Electrochemical Nitrogen Reduction Reaction
journal, September 2019

  • Liu, Xien; Jang, Haeseong; Li, Ping
  • Angewandte Chemie International Edition, Vol. 58, Issue 38
  • DOI: 10.1002/anie.201906521

Carbon‐Based Metal‐Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions
journal, January 2019


Ten years of carbon‐based metal‐free electrocatalysts
journal, September 2019

  • Paul, Rajib; Dai, Quanbin; Hu, Chuangang
  • Carbon Energy, Vol. 1, Issue 1
  • DOI: 10.1002/cey2.5

Facile, cost-effective plasma synthesis of self-supportive FeS x on Fe foam for efficient electrochemical reduction of N 2 under ambient conditions
journal, January 2019

  • Xiong, Wei; Guo, Zheng; Zhao, Shijun
  • Journal of Materials Chemistry A, Vol. 7, Issue 34
  • DOI: 10.1039/c9ta07790a

Carbon-based catalysts for electrochemical CO 2 reduction
journal, January 2019

  • Jia, Chen; Dastafkan, Kamran; Ren, Wenhao
  • Sustainable Energy & Fuels, Vol. 3, Issue 11
  • DOI: 10.1039/c9se00527g

S‐Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N 2 Fixation to NH 3
journal, October 2018


Advanced Non‐metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions
journal, July 2019

  • Zhang, Lili; Chen, Gao‐Feng; Ding, Liang‐Xin
  • Chemistry – A European Journal, Vol. 25, Issue 54
  • DOI: 10.1002/chem.201901668

Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions
journal, April 2019


Electrochemical and Chemical Instability of Vanadium Nitride in the Synthesis of Ammonia Directly from Nitrogen
journal, October 2019

  • Manjunatha, Revanasiddappa; Karajić, Aleksandar; Teller, Hanan
  • ChemCatChem, Vol. 12, Issue 2
  • DOI: 10.1002/cctc.201901558

Mammalian cell cultivation using nutrients extracted from microalgae
journal, March 2020

  • Okamoto, Yuta; Haraguchi, Yuji; Sawamura, Naoya
  • Biotechnology Progress, Vol. 36, Issue 2
  • DOI: 10.1002/btpr.2941

Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion
journal, November 2019


Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis
journal, January 2019

  • Yuan, Di; Wei, Zengxi; Han, Peng
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04141a

Sulfur vacancy-rich N-doped MoS 2 nanoflowers for highly boosting electrocatalytic N 2 fixation to NH 3 under ambient conditions
journal, January 2019

  • Zeng, Libin; Chen, Shuai; van der Zalm, Joshua
  • Chemical Communications, Vol. 55, Issue 51
  • DOI: 10.1039/c9cc02607j

Ambient Electrosynthesis of Ammonia on a Core–Shell‐Structured Au@CeO 2 Catalyst: Contribution of Oxygen Vacancies in CeO 2
journal, March 2019

  • Liu, Guoqiang; Cui, Zhiqing; Han, Miaomiao
  • Chemistry – A European Journal, Vol. 25, Issue 23
  • DOI: 10.1002/chem.201806377

Enhanced Electrocatalytic N 2 Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites
journal, July 2019


Bi nanodendrites for efficient electrocatalytic N 2 fixation to NH 3 under ambient conditions
journal, January 2020

  • Wang, Fengyi; Lv, Xu; Zhu, Xiaojuan
  • Chemical Communications, Vol. 56, Issue 14
  • DOI: 10.1039/c9cc09803h

Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions
journal, April 2019


Electrochemical Synthesis of Ammonia: Recent Efforts and Future Outlook
journal, August 2019

  • Garagounis, Ioannis; Vourros, Anastasios; Stoukides, Demetrios
  • Membranes, Vol. 9, Issue 9, 112
  • DOI: 10.3390/membranes9090112