DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids

Abstract

In this paper, we report on a new experimental methodology to enable reliable formation of droplet interface bilayer (DIB) model membranes with two types of unsaturated lipids that have proven difficult for creating stable DIBs. Through the implementation of a simple evaporation technique to condition the spontaneously assembled lipid monolayer around each droplet, we increased the success rates of DIB formation for two distinct unsaturated lipids, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), from less than 10% to near 100%. Separately, using a pendant drop tensiometer, we learned that: (a) DOPC and POPC monolayers do not spontaneously assemble into their tightest possible configurations at an oil-water interface, and (b) reducing the surface area of a water droplet coated with a partially packed monolayer leads to a more tightly packed monolayer with an interfacial tension lower than that achieved by spontaneous assembly alone. We also estimated from Langmuir compression isotherms obtained for both lipids that the brief droplet evaporation procedure prior to DIB formation resulted in a 6%–16% reduction in area per lipid for DOPC and POPC, respectively. Lastly, the increased success rates of formation for DOPC and POPC DIBs enabled quantitative characterization of unsaturated lipid membrane properties including electrical resistance, rupturemore » potential, and specific capacitance.« less

Authors:
 [1]; ORCiD logo [2];  [1]; ORCiD logo [3]; ORCiD logo [4];  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States). Department of Mechanical, Aerospace, and Biomedical Engineering
  2. Univ. of Tennessee, Knoxville, TN (United States). Department of Mechanical, Aerospace, and Biomedical Engineering and Bredesen Center; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Institute for Biological Sciences
  3. Univ. of Tennessee, Knoxville, TN (United States). Department of Biochemistry, Cellular and Molecular Biology
  4. Univ. of Tennessee, Knoxville, TN (United States). Department of Mechanical, Aerospace, and Biomedical Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Institute for Biological Sciences and Center for Nanophase Materials Sciences
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1468062
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Biomicrofluidics
Additional Journal Information:
Journal Volume: 12; Journal Issue: 2; Journal ID: ISSN 1932-1058
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Venkatesan, Guru A., Taylor, Graham J., Basham, Colin M., Brady, Nathan G., Collier, C. Patrick, and Sarles, Stephen A. Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids. United States: N. p., 2018. Web. doi:10.1063/1.5016523.
Venkatesan, Guru A., Taylor, Graham J., Basham, Colin M., Brady, Nathan G., Collier, C. Patrick, & Sarles, Stephen A. Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids. United States. https://doi.org/10.1063/1.5016523
Venkatesan, Guru A., Taylor, Graham J., Basham, Colin M., Brady, Nathan G., Collier, C. Patrick, and Sarles, Stephen A. Thu . "Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids". United States. https://doi.org/10.1063/1.5016523. https://www.osti.gov/servlets/purl/1468062.
@article{osti_1468062,
title = {Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids},
author = {Venkatesan, Guru A. and Taylor, Graham J. and Basham, Colin M. and Brady, Nathan G. and Collier, C. Patrick and Sarles, Stephen A.},
abstractNote = {In this paper, we report on a new experimental methodology to enable reliable formation of droplet interface bilayer (DIB) model membranes with two types of unsaturated lipids that have proven difficult for creating stable DIBs. Through the implementation of a simple evaporation technique to condition the spontaneously assembled lipid monolayer around each droplet, we increased the success rates of DIB formation for two distinct unsaturated lipids, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), from less than 10% to near 100%. Separately, using a pendant drop tensiometer, we learned that: (a) DOPC and POPC monolayers do not spontaneously assemble into their tightest possible configurations at an oil-water interface, and (b) reducing the surface area of a water droplet coated with a partially packed monolayer leads to a more tightly packed monolayer with an interfacial tension lower than that achieved by spontaneous assembly alone. We also estimated from Langmuir compression isotherms obtained for both lipids that the brief droplet evaporation procedure prior to DIB formation resulted in a 6%–16% reduction in area per lipid for DOPC and POPC, respectively. Lastly, the increased success rates of formation for DOPC and POPC DIBs enabled quantitative characterization of unsaturated lipid membrane properties including electrical resistance, rupture potential, and specific capacitance.},
doi = {10.1063/1.5016523},
journal = {Biomicrofluidics},
number = 2,
volume = 12,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2018},
month = {Thu Mar 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer
journal, January 2015

  • Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick
  • Soft Matter, Vol. 11, Issue 38
  • DOI: 10.1039/C5SM01005E

Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes
journal, August 2017


Enhanced Stability and Fluidity in Droplet on Hydrogel Bilayers for Measuring Membrane Protein Diffusion
journal, December 2007

  • Thompson, James R.; Heron, Andrew J.; Santoso, Yusdi
  • Nano Letters, Vol. 7, Issue 12
  • DOI: 10.1021/nl071943y

Lateral Diffusion in Substrate-Supported Lipid Monolayers as a Function of Ambient Relative Humidity
journal, September 2002


Enhanced stability of freestanding lipid bilayer and its stability criteria
journal, December 2016

  • Jeong, Dae-Woong; Jang, Hyunwoo; Choi, Siyoung Q.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38158

Solute partitioning into chain molecule interphases: Monolayers, bilayer membranes, and micelles
journal, July 1986

  • Marqusee, J. A.; Dill, Ken A.
  • The Journal of Chemical Physics, Vol. 85, Issue 1
  • DOI: 10.1063/1.451621

Model cell membranes: Discerning lipid and protein contributions in shaping the cell
journal, March 2014

  • Pomorski, Thomas Günther; Nylander, Tommy; Cárdenas, Marité
  • Advances in Colloid and Interface Science, Vol. 205
  • DOI: 10.1016/j.cis.2013.10.028

Formation of stable adhesive water-in-oil emulsions using a phospholipid and cosurfactants
journal, November 2017

  • Kim, Hyunjun; Kim, KyuHan; Lee, Hyun-Ro
  • Journal of Industrial and Engineering Chemistry, Vol. 55
  • DOI: 10.1016/j.jiec.2017.06.046

Sources of error in Langmuir trough measurements
journal, December 1998

  • Welzel, Petra B.; Weis, Ingrid; Schwarz, Gerhard
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 144, Issue 1-3
  • DOI: 10.1016/S0927-7757(98)00649-9

Heating-Enabled Formation of Droplet Interface Bilayers Using Escherichia coli Total Lipid Extract
journal, December 2014

  • Taylor, Graham J.; Sarles, Stephen A.
  • Langmuir, Vol. 31, Issue 1
  • DOI: 10.1021/la503471m

Functional Bionetworks from Nanoliter Water Droplets
journal, July 2007

  • Holden, Matthew A.; Needham, David; Bayley, Hagan
  • Journal of the American Chemical Society, Vol. 129, Issue 27
  • DOI: 10.1021/ja072292a

Membrane lipids: where they are and how they behave
journal, February 2008

  • van Meer, Gerrit; Voelker, Dennis R.; Feigenson, Gerald W.
  • Nature Reviews Molecular Cell Biology, Vol. 9, Issue 2
  • DOI: 10.1038/nrm2330

Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects
journal, January 2015

  • Garten, Matthias; Prévost, Coline; Cadart, Clotilde
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 24
  • DOI: 10.1039/C5CP00244C

SP-B refining of pulmonary surfactant phospholipid films
journal, December 1999

  • Nag, Kaushik; Munro, James G.; Inchley, Kevin
  • American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol. 277, Issue 6
  • DOI: 10.1152/ajplung.1999.277.6.L1179

Sensitivity and directionality of lipid bilayer mechanotransduction studied using a revised, highly durable membrane-based hair cell sensor
journal, May 2015


Thermodynamic Aspects of Cholesterol Effect on Properties of Phospholipid Monolayers: Langmuir and Langmuir–Blodgett Monolayer Study
journal, March 2013

  • Jurak, Małgorzata
  • The Journal of Physical Chemistry B, Vol. 117, Issue 13
  • DOI: 10.1021/jp401182c

Properties of Diphytanoyl Phospholipids at the Air–Water Interface
journal, December 2014

  • Yasmann, Anthony; Sukharev, Sergei
  • Langmuir, Vol. 31, Issue 1
  • DOI: 10.1021/la503800g

Phospholipid Monolayers at Hydrocarbon/Water Interfaces
journal, February 1994

  • Thoma, M.; Möhwald, H.
  • Journal of Colloid and Interface Science, Vol. 162, Issue 2
  • DOI: 10.1006/jcis.1994.1048

Imaging the Lipid-Phase-Dependent Pore Formation of Equinatoxin II in Droplet Interface Bilayers
journal, April 2014


Monolayer Spontaneous Curvature of Raft-Forming Membrane Lipids
journal, January 2014

  • Kollmitzer, Benjamin; Heftberger, Peter; Rappolt, Michael
  • Biophysical Journal, Vol. 106, Issue 2
  • DOI: 10.1016/j.bpj.2013.11.2802

The interaction between stearic acid monolayers and butane under elevated pressures
journal, September 2016

  • Giebel, Friederike; Paulus, Michael; Nase, Julia
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 504
  • DOI: 10.1016/j.colsurfa.2016.05.067

Asymmetric Droplet Interface Bilayers
journal, May 2008

  • Hwang, William L.; Chen, Min; Cronin, Bríd
  • Journal of the American Chemical Society, Vol. 130, Issue 18
  • DOI: 10.1021/ja802089s

Air-Exposure Technique for the Formation of Artificial Lipid Bilayers in Microsystems
journal, July 2007

  • Sandison, Mairi E.; Zagnoni, Michele; Morgan, Hywel
  • Langmuir, Vol. 23, Issue 15
  • DOI: 10.1021/la7007528

Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids
journal, December 2015

  • Tsanova, Asya; Jordanova, A.; Lalchev, Z.
  • The Journal of Membrane Biology, Vol. 249, Issue 3
  • DOI: 10.1007/s00232-015-9862-1

Ability of sodium dodecyl sulfate to transiently stabilize a phospholipid molecular layer
journal, September 2016


Why can artificial membranes be fabricated so rapidly in microfluidics?
journal, January 2013

  • Thutupalli, Shashi; Fleury, Jean-Baptiste; Steinberger, Audrey
  • Chemical Communications, Vol. 49, Issue 14
  • DOI: 10.1039/c2cc38867g

Surfactant-Induced Phases in Water-Supported Alkane Monolayers: II. Structure
journal, July 2014

  • Yefet, Shai; Sloutskin, Eli; Tamam, Lilach
  • Langmuir, Vol. 30, Issue 27
  • DOI: 10.1021/la501589t

Comparison of Cis and Trans Fatty Acid Containing Phosphatidylcholines on Membrane Properties
journal, May 2004

  • Roach, Charles; Feller, Scott E.; Ward, Jesse A.
  • Biochemistry, Vol. 43, Issue 20
  • DOI: 10.1021/bi049917r

Interfacial tension in adsorption of lysozyme onto a lipid monolayer formed at a water/chloroform interface
journal, September 2015

  • Ohno, Masashi; Toyota, Taro; Nomoto, Tomonori
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 480
  • DOI: 10.1016/j.colsurfa.2014.12.054

Dynamic morphologies of microscale droplet interface bilayers
journal, January 2014

  • Mruetusatorn, Prachya; Boreyko, Jonathan B.; Venkatesan, Guru A.
  • Soft Matter, Vol. 10, Issue 15
  • DOI: 10.1039/c3sm53032a

Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability
journal, January 2016

  • Venkatesan, Guru A.; Sarles, Stephen A.
  • Lab on a Chip, Vol. 16, Issue 11
  • DOI: 10.1039/C6LC00391E

Surfactant-Induced Surface Freezing at the Alkane-Water Interface
journal, April 2004


A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment
journal, September 2014

  • Vanni, Stefano; Hirose, Hisaaki; Barelli, Hélène
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5916

Constructing droplet interface bilayers from the contact of aqueous droplets in oil
journal, May 2013

  • Leptihn, Sebastian; Castell, Oliver K.; Cronin, Brid
  • Nature Protocols, Vol. 8, Issue 6
  • DOI: 10.1038/nprot.2013.061

Effect of Surface Treatment on Diffusion and Domain Formation in Supported Lipid Bilayers
journal, April 2007


Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation
journal, November 2015


Collapse Mechanisms of Langmuir Monolayers
journal, May 2008


The molecular mechanism of lipid monolayer collapse
journal, July 2008

  • Baoukina, S.; Monticelli, L.; Risselada, H. J.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 31
  • DOI: 10.1073/pnas.0711563105

Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: Effect of head group electrostatics and tail group packing
journal, September 2006

  • Ishitsuka, Yuji; Pham, Duy S.; Waring, Alan J.
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1758, Issue 9
  • DOI: 10.1016/j.bbamem.2006.08.001

Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids
journal, June 2017

  • Fainerman, V. B.; Aksenenko, E. V.; Miller, R.
  • Advances in Colloid and Interface Science, Vol. 244
  • DOI: 10.1016/j.cis.2015.11.004

Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis
journal, December 2006

  • Funakoshi, Kei; Suzuki, Hiroaki; Takeuchi, Shoji
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac0613479

Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents
journal, January 2016

  • Tamaddoni, Nima; Taylor, Graham; Hepburn, Trevor
  • Soft Matter, Vol. 12, Issue 23
  • DOI: 10.1039/C6SM00400H

Adhesion of Water Droplets in Organic Solvent
journal, October 1998


Measurement of surface and interfacial tension using pendant drop tensiometry
journal, September 2015

  • Berry, Joseph D.; Neeson, Michael J.; Dagastine, Raymond R.
  • Journal of Colloid and Interface Science, Vol. 454
  • DOI: 10.1016/j.jcis.2015.05.012

Droplet interface bilayers
journal, January 2008

  • Bayley, Hagan; Cronin, Brid; Heron, Andrew
  • Molecular BioSystems, Vol. 4, Issue 12
  • DOI: 10.1039/b808893d

Electrophysiological Characterization of Membrane Disruption by Nanoparticles
journal, April 2011

  • de Planque, Maurits R. R.; Aghdaei, Sara; Roose, Tiina
  • ACS Nano, Vol. 5, Issue 5
  • DOI: 10.1021/nn103320j

Water Permeability across Symmetric and Asymmetric Droplet Interface Bilayers: Interaction of Cholesterol Sulfate with DPhPC
journal, October 2015


Role of Squalene in the Organization of Monolayers Derived from Lipid Extracts of Halobacterium salinarum
journal, June 2013

  • Gilmore, Sean F.; Yao, Andrew I.; Tietel, Zipora
  • Langmuir, Vol. 29, Issue 25
  • DOI: 10.1021/la401412t

Monolayer spontaneous curvature of raft-forming membrane lipids
journal, January 2013

  • Kollmitzer, Benjamin; Heftberger, Peter; Rappolt, Michael
  • Soft Matter, Vol. 9, Issue 45
  • DOI: 10.1039/c3sm51829a

Tensions and free energies of formation of "solventless" lipid bilayers. Measurement of high contact angles
journal, March 1983


Works referencing / citing this record:

A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics
journal, December 2019

  • El-Beyrouthy, Joyce; Makhoul-Mansour, Michelle M.; Taylor, Graham
  • Journal of The Royal Society Interface, Vol. 16, Issue 161
  • DOI: 10.1098/rsif.2019.0652

Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers
journal, November 2018

  • Barlow, Nathan E.; Kusumaatmaja, Halim; Salehi-Reyhani, Ali
  • Journal of The Royal Society Interface, Vol. 15, Issue 148
  • DOI: 10.1098/rsif.2018.0610

Droplet microfluidics for the construction of compartmentalised model membranes
journal, January 2018

  • Trantidou, T.; Friddin, M. S.; Salehi-Reyhani, A.
  • Lab on a Chip, Vol. 18, Issue 17
  • DOI: 10.1039/c8lc00028j

Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers
journal, November 2018

  • Barlow, Nathan E.; Kusumaatmaja, Halim; Salehi-Reyhani, Ali
  • Journal of The Royal Society Interface, Vol. 15, Issue 148
  • DOI: 10.1098/rsif.2018.0610