DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uncertainty analysis of axial temperature and Seebeck coefficient measurements

Authors:
 [1];  [1]; ORCiD logo [2]
  1. Univ. of Connecticut, Storrs, CT (United States). Dept. of Mechanical Engineering
  2. Univ. of Connecticut, Storrs, CT (United States). Dept. of Mechanical Engineering; Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1466272
Alternate Identifier(s):
OSTI ID: 1485393
Report Number(s):
LA-UR-18-27141
Journal ID: ISSN 0034-6748; LA-UR-18-27141
Grant/Contract Number:  
AC52-06NA25396; CAREER-1553987; PD17-0137
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 89; Journal Issue: 8; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 30 DIRECT ENERGY CONVERSION; materials; transition metals; vacuum apparatus; thermodynamic processes; thermoelectric effects; thermal conductivity

Citation Formats

Yazdani, Sajad, Kim, Hyun-Young, and Pettes, Michael Thompson. Uncertainty analysis of axial temperature and Seebeck coefficient measurements. United States: N. p., 2018. Web. doi:10.1063/1.5023909.
Yazdani, Sajad, Kim, Hyun-Young, & Pettes, Michael Thompson. Uncertainty analysis of axial temperature and Seebeck coefficient measurements. United States. https://doi.org/10.1063/1.5023909
Yazdani, Sajad, Kim, Hyun-Young, and Pettes, Michael Thompson. Mon . "Uncertainty analysis of axial temperature and Seebeck coefficient measurements". United States. https://doi.org/10.1063/1.5023909. https://www.osti.gov/servlets/purl/1466272.
@article{osti_1466272,
title = {Uncertainty analysis of axial temperature and Seebeck coefficient measurements},
author = {Yazdani, Sajad and Kim, Hyun-Young and Pettes, Michael Thompson},
abstractNote = {},
doi = {10.1063/1.5023909},
journal = {Review of Scientific Instruments},
number = 8,
volume = 89,
place = {United States},
year = {Mon Aug 06 00:00:00 EDT 2018},
month = {Mon Aug 06 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Overview of the experimental methodology modeled in this work. The Seebeck coefficient is obtained by measurement of the (b) temperature difference and (c) thermovoltage through the relationship S=-(V+–V-)/(Thot–Tcold).

Save / Share:

Works referenced in this record:

Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity
journal, March 2013

  • Wang, Hsin; Porter, Wallace D.; Böttner, Harald
  • Journal of Electronic Materials, Vol. 42, Issue 6
  • DOI: 10.1007/s11664-013-2516-0

Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity
journal, January 2013

  • Wang, Hsin; Porter, Wallace D.; Böttner, Harald
  • Journal of Electronic Materials, Vol. 42, Issue 4
  • DOI: 10.1007/s11664-012-2396-8

In-plane thermal conductivity of disordered layered WSe2 and (W)x(WSe2)y superlattice films
journal, October 2007

  • Mavrokefalos, Anastassios; Nguyen, Ngoc T.; Pettes, Michael T.
  • Applied Physics Letters, Vol. 91, Issue 17
  • DOI: 10.1063/1.2800888

A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly
journal, January 2012

  • Mehta, Rutvik J.; Zhang, Yanliang; Karthik, Chinnathambi
  • Nature Materials, Vol. 11, Issue 3
  • DOI: 10.1038/nmat3213

High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012

  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

Round-robin measurements of two candidate materials for a Seebeck coefficient Standard Reference Material™
journal, September 2008


Uncertainty analysis for common Seebeck and electrical resistivity measurement systems
journal, August 2014

  • Mackey, Jon; Dynys, Frederick; Sehirlioglu, Alp
  • Review of Scientific Instruments, Vol. 85, Issue 8
  • DOI: 10.1063/1.4893652

A Mesoporous Anisotropic n-Type Bi 2 Te 3 Monolith with Low Thermal Conductivity as an Efficient Thermoelectric Material
journal, July 2012

  • Zhang, Yichi; Day, Tristan; Snedaker, Matthew L.
  • Advanced Materials, Vol. 24, Issue 37
  • DOI: 10.1002/adma.201201974

Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium Reduction of Polymer-Templated Silica
journal, June 2012

  • Fang, Jin; Kang, Chris B.; Huang, Yi
  • The Journal of Physical Chemistry C, Vol. 116, Issue 23
  • DOI: 10.1021/jp302531d

Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates
journal, October 2016

  • Pettes, Michael Thompson; Kim, Jaehyun; Wu, Wei
  • APL Materials, Vol. 4, Issue 10
  • DOI: 10.1063/1.4955400

Effects of Surface Band Bending and Scattering on Thermoelectric Transport in Suspended Bismuth Telluride Nanoplates
journal, October 2013

  • Pettes, Michael Thompson; Maassen, Jesse; Jo, Insun
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402828s

In-plane thermal and thermoelectric properties of misfit-layered [(PbSe)0.99]x(WSe2)x superlattice thin films
journal, May 2010

  • Mavrokefalos, Anastassios; Lin, Qiyin; Beekman, Matthew
  • Applied Physics Letters, Vol. 96, Issue 18
  • DOI: 10.1063/1.3428577

Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010

  • Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102931z

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Determination of Thermoelectric Module Efficiency: A Survey
journal, February 2014

  • Wang, Hsin; McCarty, Robin; Salvador, James R.
  • Journal of Electronic Materials, Vol. 43, Issue 6
  • DOI: 10.1007/s11664-014-3044-2

A high temperature apparatus for measurement of the Seebeck coefficient
journal, June 2011

  • Iwanaga, Shiho; Toberer, Eric S.; LaLonde, Aaron
  • Review of Scientific Instruments, Vol. 82, Issue 6
  • DOI: 10.1063/1.3601358

Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy
journal, April 2009

  • Huang, M.; Yan, H.; Chen, C.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 18, p. 7304-7308
  • DOI: 10.1073/pnas.0811754106

Works referencing / citing this record:

Enhanced thermoelectric performance in single-crystal-like semiconducting flexible GaAs films
journal, March 2019

  • Singh, S.; Dutta, P.; Rathi, M.
  • APL Materials, Vol. 7, Issue 3
  • DOI: 10.1063/1.5086061