DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements

Abstract

Here, a heterodyne detection scheme is combined with a 10.59 μm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 1017 m–2. Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.

Authors:
 [1];  [2];  [2];  [2];  [2]; ORCiD logo [2];  [2];  [2];  [2];  [2];  [3];  [3];  [4];  [4];  [4];  [5]
  1. National Institute for Fusion Science, Gifu (Japan)
  2. General Atomics, San Diego, CA (United States)
  3. Palomar College, San Diego, CA (United States)
  4. Univ. of California Los Angeles, Los Angeles, CA (United States)
  5. California State University, San Marcos, San Marcos, CA (United States)
Publication Date:
Research Org.:
Tech-X Corp., Boulder, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1466040
Alternate Identifier(s):
OSTI ID: 1334833
Grant/Contract Number:  
FC02-06ER54875; FC02-08ER54972
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 87; Journal Issue: 12; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Akiyama, T., Van Zeeland, M. A., Boivin, R. L., Carlstrom, T. N., Chavez, J. A., Muscatello, C. M., O’Neill, R. C., Vasquez, J., Watkins, M., Martin, W., Colio, A., Finkenthal, D. K., Brower, D. L., Chen, J., Ding, W. X., and Perry, M. Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements. United States: N. p., 2016. Web. doi:10.1063/1.4969055.
Akiyama, T., Van Zeeland, M. A., Boivin, R. L., Carlstrom, T. N., Chavez, J. A., Muscatello, C. M., O’Neill, R. C., Vasquez, J., Watkins, M., Martin, W., Colio, A., Finkenthal, D. K., Brower, D. L., Chen, J., Ding, W. X., & Perry, M. Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements. United States. https://doi.org/10.1063/1.4969055
Akiyama, T., Van Zeeland, M. A., Boivin, R. L., Carlstrom, T. N., Chavez, J. A., Muscatello, C. M., O’Neill, R. C., Vasquez, J., Watkins, M., Martin, W., Colio, A., Finkenthal, D. K., Brower, D. L., Chen, J., Ding, W. X., and Perry, M. Thu . "Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements". United States. https://doi.org/10.1063/1.4969055. https://www.osti.gov/servlets/purl/1466040.
@article{osti_1466040,
title = {Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements},
author = {Akiyama, T. and Van Zeeland, M. A. and Boivin, R. L. and Carlstrom, T. N. and Chavez, J. A. and Muscatello, C. M. and O’Neill, R. C. and Vasquez, J. and Watkins, M. and Martin, W. and Colio, A. and Finkenthal, D. K. and Brower, D. L. and Chen, J. and Ding, W. X. and Perry, M.},
abstractNote = {Here, a heterodyne detection scheme is combined with a 10.59 μm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 1017 m–2. Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.},
doi = {10.1063/1.4969055},
journal = {Review of Scientific Instruments},
number = 12,
volume = 87,
place = {United States},
year = {Thu Dec 08 00:00:00 EST 2016},
month = {Thu Dec 08 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Application of a digital phase comparator technique to interferometer data
journal, January 1997

  • Jiang, Y.; Brower, D. L.; Zeng, L.
  • Review of Scientific Instruments, Vol. 68, Issue 1
  • DOI: 10.1063/1.1147765

CO2 laser imaging interferometer for high spatial resolution electron density profile measurements on LHD
journal, March 2003

  • Akiyama, T.; Tanaka, K.; Vyacheslavov, L. N.
  • Review of Scientific Instruments, Vol. 74, Issue 3
  • DOI: 10.1063/1.1532759

Dual CO 2 laser interferometer with a wavelength combination of 10.6 and 9.27 μm for electron density measurement on large tokamaks
journal, April 1996

  • Kawano, Yasunori; Nagashima, Akira; Hatae, Takaki
  • Review of Scientific Instruments, Vol. 67, Issue 4
  • DOI: 10.1063/1.1146892

Dispersion interferometer using modulation amplitudes on LHD (invited)
journal, November 2014

  • Akiyama, T.; Yasuhara, R.; Kawahata, K.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4886777

Development of dispersion interferometer for magnetic confinement plasmas and high-pressure plasmas
journal, September 2015


MIRI: A multichannel far‐infrared interferometer/polarimeter for TFTR (abstract)
journal, May 1985

  • Park, H.; Mansfield, D. K.; Johnson, L. C.
  • Review of Scientific Instruments, Vol. 56, Issue 5
  • DOI: 10.1063/1.1138051

Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments
journal, May 2006

  • Bagryansky, P. A.; Khilchenko, A. D.; Kvashnin, A. N.
  • Review of Scientific Instruments, Vol. 77, Issue 5
  • DOI: 10.1063/1.2202922

Approaches towards long-pulse divertor operations on EAST by active control of plasma–wall interactions
journal, November 2013


Second-harmonic interferometers
journal, January 1980

  • Hopf, F. A.; Tomita, A.; Al-Jumaily, G.
  • Optics Letters, Vol. 5, Issue 9
  • DOI: 10.1364/OL.5.000386

Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer
journal, November 2009

  • Brandi, F.; Giammanco, F.; Harris, W. S.
  • Review of Scientific Instruments, Vol. 80, Issue 11
  • DOI: 10.1063/1.3258199

Application of phase-modulated dispersion interferometry to electron-density diagnostics of high-pressure plasma
journal, June 2014


Plasma regimes and research goals of JT-60SA towards ITER and DEMO
journal, May 2011


Dispersion interferometer for controlled fusion devices
journal, April 1993

  • Drachev, V. P.; Krasnikov, Yu. I.; Bagryansky, P. A.
  • Review of Scientific Instruments, Vol. 64, Issue 4
  • DOI: 10.1063/1.1144170

Sawtooth oscillations in ion cyclotron emission from JET
journal, May 1989


First results from the modular multi-channel dispersion interferometer at the TEXTOR tokamak
journal, June 2011

  • Dreier, H.; Bagryansky, P.; Baumgarten, N.
  • Review of Scientific Instruments, Vol. 82, Issue 6
  • DOI: 10.1063/1.3600896

CO 2 laser-based dispersion interferometer utilizing orientation-patterned gallium arsenide for plasma density measurements
journal, September 2013

  • Bamford, D. J.; Cummings, E. A.; Panasenko, D.
  • Review of Scientific Instruments, Vol. 84, Issue 9
  • DOI: 10.1063/1.4819028

Far infrared laser interferometer system on the Large Helical Device
journal, January 1999

  • Kawahata, K.; Tanaka, K.; Ito, Y.
  • Review of Scientific Instruments, Vol. 70, Issue 1
  • DOI: 10.1063/1.1149394

Real‐time, vibration‐compensated CO 2 interferometer operation on the DIII‐D tokamak
journal, July 1988

  • Carlstrom, T. N.; Ahlgren, D. R.; Crosbie, J.
  • Review of Scientific Instruments, Vol. 59, Issue 7
  • DOI: 10.1063/1.1139726

WEST Physics Basis
journal, May 2015


Works referencing / citing this record:

Design of a dispersion interferometer combined with a polarimeter to increase the electron density measurement reliability on ITER
journal, September 2016

  • Akiyama, T.; Sirinelli, A.; Watts, C.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4962050

A heterodyne dispersion interferometer for wide bandwidth density measurements on DIII-D
journal, October 2018

  • Akiyama, T.; Van Zeeland, M. A.; Boivin, R. L.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5037997

Design of compact dispersion interferometer with a high efficiency nonlinear crystal and a low power CO 2 laser
journal, December 2017


Real-time dispersion interferometry for density feedback in fusion devices
journal, September 2018