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Abstract in 1965, Brutsaert proposed a model that predicted mean evaporation rate E from rough surfa-
ces to scale with the 3/4 power law of the friction velocity (u.) and the square-root of molecular diffusivity
(Dp,) for water vapor. In arriving at these results, a number of assumptions were made regarding the surface
renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional
mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy
renewal process itself. The working hypothesis explored here is that E ~ \/D_muﬁ/4 is a direct outcome of
the Kolmogorov scaling for inertial subrange eddies modified to include viscous cutoff thereby bypassing
the need for a surface renewal assumption. It is demonstrated that Brutsaert’s model for E may be more
general than its original derivation implied.

Plain Language Summary The movement of water vapor molecules from rough surfaces such as
soils by eddies into the atmosphere is of primary significance to a plethora of applications including hydrolog-
ical and meteorological forecasting, irrigation planning, energy partitioning, and subsequent growth of the
atmospheric boundary layer, to name a few. In 1965, W. Brutsaert proposed a general model that links the
movement of water vapor molecules from the surface to the molecular diffusivity of water vapor in air and
the wind-induced shear stress at the surface. The derivation considered air packets sweeping down and com-
ing in contact with the wet surface. When in contact with the surface, these packets become enriched with
water vapor molecules during a finite contact duration, after which these packets are ejected from the surface.
Brutsaert made key restrictive assumptions about the statistical properties of the contact duration of these
packets with the surface to arrive at the final form of the evaporation equation. The work here demonstrates
that the same result can be derived by assuming a turnover velocity of these air packets to follow a universal
form based on a widely accepted theory of turbulent flows proposed by A. N. Kolmogorov.

1. Introduction

In his acceptance letter of the Rumford Medal in 1881, Gibbs declared that “One of the principal objects of
theoretical research is to find the point of view from which the subject appears in the greatest simplicity.”
Guided by this quotation, the subject of evaporation into the atmosphere from rough surfaces by turbu-
lence offered in Brutsaert [1965] is reexamined. The work in Brutsaert [1965] considered the evaporation rate
from a rough surface characterized by a momentum surface roughness height z, in terms of molecular dif-
fusion transmitting water vapor into eddies experiencing random contact times of duration t with the sur-
face. To proceed further, Brutsaert [1965] assumed that the distributional properties of 7, labeled p(z), are
exponential as originally proposed by Danckwerts [1951]. The novel outcome of the Brutsaert [1965] renewal
analysis is that the mean evaporation rate E scales with the 3/4 power law of the friction velocity u, (instead
of a linear scaling) and the square-root of molecular diffusivity (D,,) of water vapor. Furthermore, Brutsaert
[1965] assumed that the mean turbulent kinetic energy (TKE) dissipation rate € describing the transfer of
energy along the turbulent energy cascade is external to the evaporating surface and given by the mechan-
ical production of TKE. This assumption holds for stationary and planar-homogeneous turbulence with no
mean vertical velocity and when the sum of transport terms by turbulence and by pressure redistribution
can be ignored. With these assumptions, the TKE budget at z = z, reduces to
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Figure 1. Schematic illustrating the interfacial transfer of water vapor into a turbulent atmosphere. A disturbed viscous sublayer of thick-
ness (/p) exists above a rough surface characterized by a momentum roughness length z, that scales with the protrusion height of the
roughness elements. Attached eddies are mechanically produced at z = z, and they transfer energy at rate ¢ to eddies within the disturbed
viscous sublayer, where ultimately this energy is dissipated by viscosity. The figure here only shows the production and dissipation stages
without showing the intermediate eddy sizes in-between for clarity. The mean water vapor concentration profile Tz) is characterized by a
mean surface concentration C; and then rapidly decreases with increasing height z within the disturbed viscous sublayer to a background
value G, For Ip < z < z,, C(2) does not deviate appreciably from the background C,. The turnover velocity of these eddies within the dis-
turbed viscous sublayer is described by the structure function Dy, (8)=[w(x+38)—w(x)]*. The main novelty here is to show that when Dy,
(r) scales with K41, the final outcome in Brutsaert [1965] is recovered without requiring a surface renewal scheme.

e=u’ = (M
The complete analysis in Brutsaert [1965] yields
E=A\/Dp w"  ae—a [ Dm } " pac 2)
" (vkzo)'/* Scrz, ) ’

where overbar is averaging to be defined later, A is a proportionality constant, v is the kinematic viscosity of
air,  is the von Karman constant, Sc=v/D, is the molecular Schmidt number, and AC is the mean water
vapor concentration difference between the evaporating surface and some distance away where the water
vapor concentration does not vary appreciably with height z, shown in Figure 1. Equation (2) is supported
by a large corpus of experiments as discussed in Brutsaert [1965] and later in Brutsaert [1975a]. This result
spawned a number of studies on interfacial transfer of scalars [Brutsaert, 1975a, 1975b], evaporation from
porous media at single and multiple pore scales [Haghighi and Or, 2013], bulk evaporation from bare soil
surfaces [Ishihara et al., 1992; Or et al., 2013], as well as isotopic fractionation in hydrological applications
[Gat, 1996; Merlivat and Coantic, 1975; Hondzo, 1998]. It also correctly foreshadowed the much discussed
“universal” scaling of liquid transfer coefficients of sparingly soluble gases (~ (ve)1/4) in air-sea exchange
studies [Garbe et al., 2014; Lorke and Peeters, 2006; Garbe et al., 2004; Kermani and Shen, 2009; Soloviev and
Schlissel, 1994; Zappa et al., 2007]. This 1/4 scaling was first reported in the experiments by Calderbank and
Moo-Young [1961] and its prediction is commonly attributed to another renewal model [Lamont and Scott,
1970], though as will be demonstrated here, it may be inferred from the model in Brutsaert [1965].

It is shown that the model outcome in Brutsaert [1965] can be succinctly derived using Kolmogorov's well-
established inertial subrange scaling of the turbulent vertical velocity structure function [Kolmogorov, 1941]
subject to viscous-cutoff corrections [Batchelor, 1951]. No arbitrary specification of random renewal or
assumptions about p(t) is necessary to arrive at equation (2). It is further demonstrated that even when a
stochastic renewal process is enforced, the internal length scale of turbulence given by the Kolmogorov
microscale ;1=(v3/e)1/4 imposes severe constraints on the mean contact time 7 making the final outcome
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in Brutsaert [1965] insensitive to the specification of p(t). Hence, the theoretical outcome in Brutsaert [1965]
may be far more robust to assumptions invoked in its original derivation, the main conjecture explored
here.

2, Theory

2.1. Background and Definitions

In the roughness sublayer (RSL) above a rough-wall boundary, a viscous sublayer whose thickness is much
smaller than z, is disturbed by turbulent flow characterized by a total stress 7, and a squared shear or fric-
tion velocity (i.e., a total kinematic surface stress) u>=1,/p, where p is the mean air density. The 7, here is a
combination of viscous and turbulent components and is assumed to be constant with distance z from the
boundary at distances commensurate to or larger than z,. Fully rough flow conditions require that z,u. /v
> 2 to ensure a z, larger than the viscous sublayer thickness as discussed in Figure 1. A sufficiently large
separation between z, and 7 ensures that eddies produced within the roughness sublayer have enough cas-
cading steps to “forget” the eddy-generation mechanism as small scales are approached.

Transport of a scalar entity such as water vapor with an Sc near unity is conducted by molecular
diffusion into the smallest eddies in contact with the surface disturbing the thin viscous sublayer as shown
in Figure 1. While the primary focus here is on water vapor, the results derived apply to any scalar whose Sc
is near unity, which is the case for many gases in the atmosphere [Massman, 1998].

2.2, The Surface Renewal (SR) Reviewed

To simplify the SR analysis in Brutsaert [1965], only the case where air parcels from a reasonably well-mixed
region characterized by C, are swept down and make full contact with the rough surface. The surface con-
centration is characterized by a near-constant C; as shown in Figure 1. When air parcels arrive and are then
in full contact with the surface, molecular diffusion governs the instantaneous water vapor flux E(t) between
the surface and these air parcels as shown in Figure 2. A model of maximum simplicity for the instantaneous
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Figure 2. The surface renewal scheme assumes air parcels with water vapor concentration C, ~ C, first sweep to the surface, make con-
tact with surface for duration © > 0 where their concentration increases due to an instantaneous E(t), then are ejected out and followed by
another sweeping event. The mean contact duration 7 is given by the Kolmogorov time scale. The concentration time pattern from such a
renewal scheme is also shown for an exponential p(t). The simplifying assumption here is that the renewal scheme does not alter the sur-
face concentration appreciably. Other distributional properties of p(t) assumed in the text are also featured and compared in the figure.
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flux is E ~ (Dp/ 1)1/ 2AC [Brutsaert, 1965; Thomson and Silver, 1972; Soloviev, 2007; Kermani and Shen, 2009]
with AC=C,(t)—Cp and 7 > 0 is, as before, the contact duration between air parcels and the surface where
water vapor exchange occurs. A plausibility argument to this formulation may be offered by noting that
Fickian diffusion from the surface into air parcels leads to E(t, z)=—D,,dC/dz. Replacing dC/dz by AC/Ip(t),
where Ip(t) is the distance separating C; from C, leads to E(t)=[Dp,/Ip(t)]AC. When the diffusion distance is
set 10 Ip(1) ~ v/Dmt, E ~ (Dm/7)"/*AC is recovered. Turbulent eddies generate random t characterized by
p(7) satisfying the normalizing condition fooc p(t)dz=1. Because replacing the air parcels in contact with the
surface is associated with the SR process itself, p(t) reflects the renewal occurrence after time 7. Infrared
camera measurements of surface temperature fluctuations suggest the space-time renewal process can be
reasonably captured by p(t) [Haghighi and Or, 2015; Garbe et al., 2004]. Hence, for each finite contact dura-
tion 7 with the surface by air parcels, it is possible to formulate an instantaneous transfer coefficient kr(t)
~ +/Dp/t [Thomson and Silver, 1972; Soloviev, 2007; Kermani and Shen, 2009] defined only when t > 0. The
nonlinear kr(t)—1 curve is assumed to be not altered by the renewal scheme. Only a variable t drawn from
p(7) is to be used in the determination of k7. To clarify the effect of p(t) on SR and the mean evaporation
rate, local interactions between AC(t) and the transfer coefficient are also ignored. This simplification
amounts to setting E(t)=kr(t)AC(t), E(t) ~ kr(t) AC(t). Such simplification may be unrealistic as surface
concentration is likely to be impacted by the SR process and is not considered here though is considered
in other studies [Haghighi and Or, 2013; Garbe et al., 2004; Soloviev and Schliissel, 1994]. Despite such simpli-
fication, the “naive” approach here recovers all the essential features of the Brutsaert [1965] model. It
also offers a reasonable analytical foresight as the mean transfer coefficient controlling E(t) will only vary
with the distributional properties of p(t). Hence, only model differences in the selection of p(t) will trans-
late to differences in k. The shape of p(t) can be readily linked to mean contact time and mean k; when
defined as

f=ro Tp(r)d‘c;E=Joo kr(t)p(z)dr, (3)
0 0

where overbar represents ensemble averaging and kr(t)=E(t)/AC when assuming AC ~ AC as earlier
noted. For kr(t) ~ \/Dm/7, kr(t) may not be identical to kr(7) due to the nonlinear dependence of kr
on 1. However, when kr(1)=k;(7) and 7 is set to the Kolmogorov time scale (v/e)'/?, then
k(%) ~ v/Dm(e/v)"*. With e=u3(xz,)"" as noted earlier, the two main results in Brutsaert [1965] are
recovered as

_ 24
E(t) ~ \/D,,,(V:ZWAC. (@)

Exploring how different p(t) representation impact the relation between kr(t) and T when kr(t) ~ \/Dm/t
is examined. The motivation for this examination is to assess the robustness of E(t) ~ VDt AC to
assumptions made about the p(t) model. Alternative models that solve the full diffusion equation can
replace the simplified expression kr(t) ~ \/Dp, /7 though they are not pursued further here. Various models
for p(t) are now considered and their shapes are compared in Figure 2. Exponential and gamma distributed
p(t) are routinely employed in SR analysis as discussed elsewhere [Danckwerts, 1951; Perlmutter, 1961;
Harriott, 1962; Bullin and Dukler, 1972] with the gamma distribution receiving significant experimental sup-
port for heat and gas exchanges from soils [Haghighi and Or, 2013; Or et al., 2013]. Other models have also
been suggested or inferred from high-resolution infrared measurements [Garbe et al., 2004] and direct
numerical simulation runs [Kermani and Shen, 2009] for air-water interfaces. Power law distributions have
been experimentally reported for bursting durations of sensible heat above bare soils [Katul et al., 1994]
and for momentum near smooth walls [Rao et al., 1971] whereas Wald (or inverse-Gaussian) distributions
naturally emerge when describing crossing statistics of Brownian air parcels with finite drift [Katul et al.,
2005]. Stretched exponential (i.e.,, power law distribution censored by an exponential cutoff) have been
used in persistence studies of scalar concentration fluctuations in the roughness sublayer [Cava and Katul,
2009] and those distributions can be linked to p(t) using approaches discussed elsewhere [Laherrere and
Sornette, 1998]. Their overall features resemble Wald distributions and are not treated separately here. It is
shown next that all these p(t) models, characterized by two parameters a and b, do not differ appreciably
in predicting kr(t) when constrained by a mean contact duration commensurate with the Kolmogorov
time microscale.
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1. Exponential. When assuming p(t)=aexp(—br) as used by Brutsaert [1965], then enforcing [ p(1)dt=1
leads to a/b=1 or a = b. Employing the definitions in equation (3), it directly follows that t=ab™2=b""
and kr ~ /7D}?b"/? or kr(t) =k () with no additional simplifications. Upon setting T=b""=(v/e)"/?, it
also follows that kr(7) ~ :,,/Z(e/v)”“. With e=u3(kz,) ", E(t) ~ Dmu§/4(vxzo)_1/4AC is recovered.

2. Power law (Pareto or Zipf). When assuming p(t)=ba®/1°*", then equation (3) results in T=(ab)/(b—1) for
t>aand ky ~ D} 2b/[v/a(1+2b)]. If b is sufficiently large, the mean and mode of contact times con-
verge to a and kr ~ Dy/* 1/[v/a] (i.e., resulting in kr(t) =kr(7)). Setting %:a:(v/e)”2 as before recovers
kr(7) ~ D:,,/z(e/v)1/4. With e=u3(kz,) ", E(t) ~ \/WUi/“(wczo)*]/“AC is again recovered.

3. Gamma. This is a common distribution in SR analysis and is given by p(t)=[t""/(I'(a)b®)]exp (—/b),
where I'(.) is the Gamma function. From equation (3), T=ab because I'(a+1)=al’(a). It also leads to
kr ~ Dy/’T'(a—1/2)/[VbT(a)]. For sufficiently large a, T'(a+«)/[[(a)a*] ~ 1, kr ~ D}/*/v/ba and with
the mean contact time T=ab=(v/¢)"/? (i.e, resulting in kr(t) =kr (7)), kr(7) ~ :,,/Z(e/v)”“. With e=u?
(kz) ", E(t) ~ \/EUiM(wczo)_wAC is, once again, recovered. For small g, this argument fails though a
sensitivity analysis shows that a > 3 may be treated as sufficiently large for I'(a+a)/[I'(a)a”] ~ 1.

4. Inverse-Gaussian (or Wald). When assuming p(t)=+/b/2nt3exp E—b(r—a)z/(Zazr) , then equation (3)
results in =a and ky ~ D> a 'exp (b/a)\/2b/7K,(s), where K,(s) is a modified Bessel function of the
second type of order o and s=b/a. For an arbitrary o,

4021
Ka(s)=\/§exp(—s){1— °‘85 +} (5)

with higher-order terms decaying rapidly with increasing s. For large s, the leading order term is
K,(s) = \/n/2 exp(—s). This expression is only exact for «=1/2. With this simplification for
K,(s), kr ~ Dy/?a~1/2. Setting T=a=(v/¢)"/? once again recovers kr(t) ~ Dy *(¢/v)"/*. With e=u3(kz,) ",
E(t) ~ Dyt *(vizo) "/*AC emerges.

To sum up, setting 7= (\//5)1/2 leads to kr(t) ~ DMZ(e/V)W' for various p(t) models suggesting that the pre-
cise details of the renewal scheme encoded in p(t) are not as significant for the main result by Brutsaert
[1965] to hold. The analysis here also confirms earlier conclusions [PerImutter, 1961; Koppel et al., 1966; Seo
and Lee, 1988] that the precise shape of p(t) may be less consequential to bulk transfer coefficients when
using SR provided some constraints on mean contact durations are established.

3. Beyond Surface Renewal: A Structure Function Approach

The E(t) is related to a mean concentration difference between the interface and the bulk layer situated at
some & from the surface as shown in Figure 1. For this setup, E=wr.o AC. Here the transfer velocity may be
interpreted as an effective turnover turbulent velocity |wr o | with magnitude \/w%_o_ for eddies of arbitrary
size ¢ as shown in Figure 1. This exchange process requires that scalar quantities move coherently with
or.0. and do not appreciably diffuse in or out of eddies of size 6 during a turnover. It will be shown later
that this assumption requires Sc to be commensurate to or greater than unity. The simplest model is to
relate w2, to € and eddy size using a Kolmogorov inertial subrange scaling (or K41) for locally homoge-
neous and isotropic turbulence [Kolmogorov, 1941]. That is

2 6 =D (1) = [W(x+8) —w(x)]* =Co ()3, (6)

where G, is the Kolmogorov constant for the vertical velocity, w is the turbulent vertical velocity, and x is an
arbitrary position as shown in Figure 1. This conceptual approach successfully reproduced many features
linking eddy sizes to bulk turbulent flow properties [Gioia and Bombardelli, 2002; Gioia et al., 2010; Katul
et al., 2011; Manes et al., 2012; Konings et al., 2012]. This success is surprising as near solid or porous bound-
aries, the flow is not locally homogeneous and isotropic (e.g., eddies near smooth solid surfaces exhibit
worm-like topology) and deviations from K41 scaling are to be expected. Notwithstanding this critique,
invoking K41 scaling is a logical first step to be conducted as shown in prior studies flow over rough surfa-
ces [Gioia and Bombardelli, 2002]. Setting J to Ip= (v3/e)1/4, the bulk transfer velocity can be interpreted as
an effective eddy turnover velocity resulting in kr=+/w? 5 ~ /Gy (ve)1/4. This outcome explains why such
transfer velocity appears to be related to (ve)1/4 across different types of surfaces or interfaces [Zappa et al.,
2007]. The quantity (V6)1/4=VKO/ is simply the Kolmogorov velocity defined by the Reynolds number
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Vkoi'1/v="1. Unsurprisingly, any dimensional consideration for k;, invoking only Kolmogorov variables (i.e., v
and ¢) describing the “hand-shake” between the viscous sublayer and the overlying turbulent layer must
yield v, as the “master” variable.

With the TKE production assumed to be balancing dissipation again (i.e., e:ui(Kzo)q) and only accounting
for K41 scaling, the structure function approach directly leads to

~ v 1/4 L D2 1/4 -
E~ [7} V4AC ~ {4} u3/*AC. 7)
KZo VKZ,

Equations (2) (right-end equality) and (7) converge when Sc is set to unity (i.e., v=Dp,) in equation (2). An
amendment to equation (7) may also be derived by explicitly including viscous corrections to K41 scaling,
which are expected to be significant for scales commensurate to the Kolmogorov microscale (the case
here). Specifically, the viscous corrections to a K41 structure function are given by

oW 1 v

Coler)?? ¢

where (=0(r/n)*3, 9=(10Cj()71/2, C,=2, and the Dawson function is given by

{

DaWF(C)=exp(—§2)Lexp (p*)dp ~ C—§C3+... 9)

This expression presented in Figure 1 was derived from approximations to the von Karman-Howarth equa-
tion [Karman and Howarth, 1938] (VKH) without resorting to a constant skewness assumption [Obukhov,
1949; Panchev, 1971] across scales. It was shown elsewhere [Katul et al., 2015] that this approximate solution
to the VKH equation recovers several features about transitions from K41 scaling to viscous range, including
the spectral bottleneck in the turbulent kinetic energy spectrum [Hill, 1978; Herring et al., 1982; Saddoughi
and Veeravalli, 1994; Lamorgese et al., 2005; Meyers and Meneveau, 2008; Ishihara et al., 2009; Donzis and
Sreenivasan, 2010; Frisch et al., 2013]. It also agrees with the Batchelor correction to the K41 scaling in the
viscous subrange [Batchelor, 1951]. Setting r=0= 1 and considering only a two-term expansion of the Daw-
son function does not alter the final outcome in equation (7). The expected viscous corrections to K41 scal-
ing for Dy (r) here simply do not alter the (5)1/4 scaling for k. Because Sc is near unity for many gases in
the atmosphere [Massman, 1998], equation (7) is the sought result.

4. Discussion and Study Limitation

In arriving at the results in equation (2), a number of assumptions were made in the original derivation of
Brutsaert [1965] regarding the surface renewal rate describing the contact durations between eddies and
the evaporating surface, the diffusional mass transfer process from the surface into the eddies, and the cas-
cade of turbulent kinetic energy sustaining the eddy renewal process itself from production to dissipation.
The structure function approach proposed here recovers all the scaling results pertinent to equation (2)
without any explicit consideration of (i) the renewal process and (ii) the precise diffusional mass transfer of
water vapor from the surface into the eddies. Despite the maximum simplicity of this approach relative to
the original derivation in Brutsaert [1965], the proposed structure function approach suffers from a number
of limitations. To begin with, it is known that near roughness elements, production, and dissipation of TKE
are not in balance and production may be up to 1.7 times larger than ¢ [Pope, 2000] even for very high
Reynolds numbers and close to the surface at zu,./v ~ 10 [McColl et al., 2016]. However, this imbalance may
not be as detrimental given the subunity exponent dependency of k; on e. Another assumption is that the
TKE production rate scales with z,, which ignores large eddy contributions near the surface as discussed
elsewhere [Katul and Manes, 2014]. In the scalar transport calculations, it is assumed that K41 scaling with
the usual viscous cutoff describes the structure function of the vertical velocity without much regard to the
shape of the production regime. Near-wall measurements of the structure functions above smooth and
rough walls suggest that K41 scaling may be plausible at zu, /v ~ 15 (the limit of the measurements) for
smooth wall [Poggi et al., 2003] and immediately above rough surfaces composed of cylinder type rough-
ness elements above rough walls [Poggi et al., 2004]. Studies in the RSL above tall forests (porous roughness
elements) confirm an extensive K41 scaling near the forest-atmosphere interface [Katul et al., 1998] for
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turbulent vertical velocity. Hence, adopting K41 scaling laws to the structure function of vertical velocity
may not be “too far” off as an operational assumption for modeling E.

Two interconnected results emerge from the structure function analysis. The nonlinear relation between
kr and u, and the well-known dissimilarity between momentum and water vapor roughness heights. The
above analysis makes clear that when e ~ u3(z,) ™', the turnover velocity |wr.o.| ~ u*(é/zo)w. If 6~ z,,
then kr(=|wr.o.|) must scale linearly with u. not u3/4. Any nonlinearity in the kr—u, relation can then be
attributed to a dependence of ((3/20)1/3 on u,. The z, is expected to scale with the mean protrusion
height of roughness elements and arises here in the production of TKE term within the roughness sub-
layer. It can be interpreted as the length scale most effective at TKE generation in the RSL. The 6 mainly
reflects eddy sizes transporting water vapor from the surface after these eddies cascaded from their par-
ent length scale z,. These eddies are shown to scale with 1 and hence their u 2 dependence. It directly
follows that for a constant z,, (5/2(,)1/3 must scale with u;'/* and this result alone explains why kr scales
with u** instead of u.. Moreover, a (6/z,) that varies with u, also explains the origin of variations in water
vapor roughness height z,, with z, and u,, a topic that was considered later on in Brutsaert [1975b] and is
not repeated here. For practical measurements and simulations of evaporation, it is the variation of z,,/z,
with u.z,/v that bundles much of the transfer processes in this interfacial sublayer covered by the formu-
lations developed here.

The structure function derivation proposed here assumes Sc ~ 1, which is reasonable for several gases in
the atmosphere, including water vapor, CO,, CH,, and air temperature. When Sc deviates appreciably from
unity, a number of issues must be confronted that are beyond the immediate scope of this work. Few of
them are highlighted for Sc values comparable to those reported in the atmosphere for many gases (0.6-
0.7). The first issue is that I, differs from the Kolmogorov microscale n when Sc is sufficiently different from
unity as the effective eddy sizes in the vicinity of 7 may no longer reflect “scalar-transporting” eddies. The
second is that the shape of the scalar concentration structure function may deviate appreciably from its
value when Sc = 1, especially in its decay rate as r/Ip approaches unity due to the action of molecular diffu-
sion [Batchelor, 1959]. A common approach to accommodate the first issue is to assume Ip=Sc™ "y [Hondzo,
1998; Jahne and HauBecker, 1998; Lorke and Peeters, 2006]. It has been known for some time that n depends
on whether Sc > 1 or Sc < 1. In the limit of very large or very small Sc, two length scales have been pro-
posed to link Ip to i [Hill, 1978]: the Batchelor length scale l;=Sc~"/? y when Sc >> 1 [Batchelor, 1959] and
the Corrsin length scale lc=Sc3/* when Sc < 1 [Corrsin, 1951]. The Iz and Ic are derived from controls
over the diffusive time t,, representing a diffusive scale Ip ~ \/Dptn. If Sc > 1, then v still restricts the diffu-

sion time t,,. Hence, t,, is given by the Kolmogorov time scale tm=(v/e)1/2. This estimate of t,, results in

Ip ~ 4/ (v/Sc)(v/e)”z, which recovers Ip=I3=Sc""/2y5. This argument assumes that the velocity straining
rate on turbulent scalar concentration fluctuations is approximately uniform for scales commensurate to or

smaller than #. When Sc < 1, then molecular diffusion is far more restrictive than fluid viscosity and t,,=

(D /€)""? instead of (v/e)"/? so that Ip ~ \/Dpn(Dm/€)"/? recovering Ip=Ic=Sc~3/*y. Hence, for Sc > 1, Ip

>n and v still restrict the diffusion time t,,. When setting Ipb=5Sc™ "5 and assuming Sc > 1, the structure
function approach with viscous corrections yield

_ 11V L
E ~D,"m'/2 " {—} uw4AC. (10)
VKZ,

Equation (10) is identical to Brutsaert’s result when n = 1/2 (or Sc > 1). When Sc < 1, equation (10) no lon-
ger holds because molecular diffusion dampens scalar concentration fluctuations well before the attain-
ment of the scale at which Ip ~ . Stated differently, during an eddy turnover time commensurate to its
Kolmogorov time scale value, scalar mass diffusion can be sufficiently large due to a large D,,, or small Sc so
that the scalar does not move coherently along /5. The obvious question remains how close to unity does
Sc need to be when Sc < 1 so that equation (7) still hold (derived when Sc = 1). To answer this question, it is
necessary to explore how Sc modifies the molecular-diffusion corrections to K41 scaling in the scalar con-
centration structure function in the vicinity of the larger of all scales here (i.e., ID:lc:Sc‘3/4;1). Recall that I
> Ig > n when Sc < 1. Using approximations and assumptions analogous to those used to arrive at the VKH
equation for the vertical velocity structure function, the scalar structure function (written for air tempera-
ture) is given by [Monin and Yaglom, 1975]
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dDrr(I’) __4
dr = §6Tr7 (11)

D7TU (I’) - 2Dm

where Drr(r)=[T(x+r)—T(x)] is the temperature structure function (typical of a scalar with Schmidt num-
ber close to 0.7), Drry(r) is the mixed velocity-temperature structure function (note that Dyyy(r) is the triple
longitudinal velocity structure function that describes the vortex stretching effects in the VKH equation),
and eris the temperature variance dissipation rate. As a closure model, assume the skewness F is given by

- D7TU (r)
Drr(r)/Duy(r)

(12)

and is constant independent of r or Sc. Its value is F = 0.4 determined from measurements in the atmo-
spheric surface layer as reviewed elsewhere [Katul et al., 1997]. This condition already presumes that Sc
effects (or Ic) are not contaminating the range of scales where Dy (r) is large compared to the molecular-
diffusion term on the left-hand side of equation (11). The Dryy(r) dominates in the inertial subrange but rap-
idly decays at very small scales. For analytical tractability, assume K41 scaling also holds for Dyy(r)=C, €%/
r?/3 throughout (i.e., no bottleneck or viscous corrections to the longitudinal velocity structure function),
where G, , is the Kolmogorov constant for the longitudinal velocity component. It is to be noted that D, (r)
or Dy (r) are independent of Sc and do not introduce any Schmidt number corrections to equation (11).
Replacing this approximation into equation (11) and simplifying results in

dD'n' (I’)

Dn— +aDrr(r)r'*=br, (13)
where
Fy/Coue'/?
q=Vou . pe 2T (14)
2D, 3D,

Solving equation (13) subject to Dr7(0)=0 yields

Drr(r) o 1 .
ba 123 =1 aDawF(gT), (15)
where {;=r*3(v/3a/2) and ba~'r?/? is the K41 scaling for the air temperature structure function given by
Crere 'r?/3, and Cr is the Kolmogorov-Obukhov-Corrsin constant related to F and the Kolmogorov con-
stant via Cr=(4/3) ;J/ZF‘1. For large r, {7is large and

1
1——Dawg({) ~ 1. (16)
oT
Drry(r) is much larger than the molecular-diffusion term and K41 scaling describes D (r) with no Sc depen-
dency. For sufficiently small r, a two-term series expansion of Dawg becomes plausible and yields

1— lDawp(gr) ~ %gi, (17)
{r 3
The dependence of this solution on Sc in the vicinity of r=Ic=5c~3/*y (i.e, the largest scale where D,,
effects are expected) is compared to the case when Sc=1. To proceed further, it is noted that
e VB=w 3 (r=B:Sc2(r/n)?3, and Br=(3/2)"2271(C,F)"*, which when inserted into equation (17)
lead to a molecular-diffusion correction to the K41 scaling of Drr(Ic) given by

2 2 2 - 4/3
ggi ~ 5 Se(se 3/4Y4/3, (18)

The result here suggests that molecular corrections to K41 scaling in the temperature structure function do
not vary with Sc provided F is constant independent of Sc (and r). The shape of Drr(Ic) at Sc = 0.7 and Sc = 1
given by equation (18) is, for all purposes, self-similar. Moreover, the shape of Drr(r) is similar to Dy (r)
when assuming Sc = 1. A logical follow-up question to ask is whether there is experimental support for the
similarity between Drr(r) and Dy, (r) shapes when Sc = 0.7. Measured air temperature spectra do exhibit
K41 scaling laws followed by “bottlenecks” at the crossover from inertial to molecular dissipation regimes at
scales r/n = 0.1 [Hill, 1978] commensurate with those reported for vertical velocity and turbulent kinetic
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energy [Pope, 2000; Saddoughi and Veeravalli, 1994] consistent with the analysis here. Hence, equation (7)
may still hold given the self-similarity in shapes of the temperature and vertical velocity structure functions
(even when Sc = 0.7). Besides Sc, n may be sensitive to other factors such as surface state, wind conditions,
and associated roughness [Csanady, 1990; Jahne and Haulecker, 1998; Esters et al., 2016] as discussed in
many air-sea exchange studies. In particular, Jahne and HauBecker [1998] demonstrated variability in n with
n = 3/4 measured for low wind speed conditions whereas n dropped to 1/2 with increasing wind speed
over water surfaces (with small waves) for the same soluble gas.

5. Conclusion

The work in Brutsaert [1965] demonstrated that the mean evaporation rate scales with the 3/4 power law of
the friction velocity and the square-root of molecular diffusivity. The two aforementioned results were
recovered here using a simpler surface renewal analysis than the one offered by Brutsaert [1965]. Key to all
surface renewal schemes is the assumption about the probabilistic nature of the contact durations of eddies
with the surface. The two results in Brutsaert [1965] were shown to be robust to this assumption provided
the mean contact duration remains proportional to the Kolmogorov time microscale. A new approach was
proposed that links eddy turnover velocity to the structure function of the vertical velocity that is adequate
when the molecular Schmidt number is near or larger than unity. The main advantage of the new approach
is that the structure function exhibits universal scaling laws (e.g., K41) that are modified by viscous cutoff
for small scales. However, these viscous-cutoff modifications can be derived from the von Karman-Howarth
equation [Karman and Howarth, 1938]. Hence, the new approach ameliorates the ad hoc nature of the sur-
face renewal scheme used in Brutsaert [1965]. It directly results in a mean evaporation rate equation that is
identical to the one derived in Brutsaert [1965] when imposing an effective eddy size commensurate with
the Kolmogorov microscale. It can be concluded that the findings in Brutsaert [1965] are more general than
originally proposed provided the finest eddies at the surface-atmosphere interface scale with the Kolmogo-
rov length (for the structure function approach) or time (for the surface renewal approach) scales.
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