DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal anisotropy enhanced by phonon size effects in nanoporous materials

Abstract

While thermal anisotropy is a desirable materials property for many applications, including transverse thermoelectrics and thermal management in electronic devices, it remains elusive in practical natural compounds. In this work, we show how nanoporous materials with anisotropic pore lattices can be used as a platform for inducing strong heat transport directionality in isotropic materials. Using density functional theory and the phonon Boltzmann transport equation, we calculate the phonon-size effects and thermal conductivity of nanoporous silicon with different anisotropic pore lattices. Here, our calculations predict a strong directionality in the thermal conductivity, dictated by the difference in the pore-pore distances, i.e., the phonon bottleneck, along the two Cartesian axes. Using Fourier’s law, we also compute the diffusive heat transport for the same geometries obtaining significantly smaller anisotropy, revealing the crucial role of phonon-size effects in tuning thermal transport directionality. Besides enhancing our understanding of nanoscale heat transport, our results demonstrate the promise of nanoporous materials for modulating anisotropy in thermal conductivity.

Authors:
 [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1466007
Alternate Identifier(s):
OSTI ID: 1348268
Grant/Contract Number:  
SC0001299; DESC0001
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 110; Journal Issue: 9; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Romano, Giuseppe, and Kolpak, Alexie M. Thermal anisotropy enhanced by phonon size effects in nanoporous materials. United States: N. p., 2017. Web. doi:10.1063/1.4976540.
Romano, Giuseppe, & Kolpak, Alexie M. Thermal anisotropy enhanced by phonon size effects in nanoporous materials. United States. https://doi.org/10.1063/1.4976540
Romano, Giuseppe, and Kolpak, Alexie M. Mon . "Thermal anisotropy enhanced by phonon size effects in nanoporous materials". United States. https://doi.org/10.1063/1.4976540. https://www.osti.gov/servlets/purl/1466007.
@article{osti_1466007,
title = {Thermal anisotropy enhanced by phonon size effects in nanoporous materials},
author = {Romano, Giuseppe and Kolpak, Alexie M.},
abstractNote = {While thermal anisotropy is a desirable materials property for many applications, including transverse thermoelectrics and thermal management in electronic devices, it remains elusive in practical natural compounds. In this work, we show how nanoporous materials with anisotropic pore lattices can be used as a platform for inducing strong heat transport directionality in isotropic materials. Using density functional theory and the phonon Boltzmann transport equation, we calculate the phonon-size effects and thermal conductivity of nanoporous silicon with different anisotropic pore lattices. Here, our calculations predict a strong directionality in the thermal conductivity, dictated by the difference in the pore-pore distances, i.e., the phonon bottleneck, along the two Cartesian axes. Using Fourier’s law, we also compute the diffusive heat transport for the same geometries obtaining significantly smaller anisotropy, revealing the crucial role of phonon-size effects in tuning thermal transport directionality. Besides enhancing our understanding of nanoscale heat transport, our results demonstrate the promise of nanoporous materials for modulating anisotropy in thermal conductivity.},
doi = {10.1063/1.4976540},
journal = {Applied Physics Letters},
number = 9,
volume = 110,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2017},
month = {Mon Feb 27 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

CRC Handbook of Thermoelectrics
book, January 2017


Derivation of the Lattice Boltzmann Method by Means of the Discrete Ordinate Method for the Boltzmann Equation
journal, February 1997


Multiscale Electrothermal Modeling of Nanostructured Devices
journal, November 2011


Heat transport in silicon from first-principles calculations
journal, August 2011


Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
journal, January 2011

  • Hopkins, Patrick E.; Reinke, Charles M.; Su, Mehmet F.
  • Nano Letters, Vol. 11, Issue 1
  • DOI: 10.1021/nl102918q

Energy dissipation and transport in nanoscale devices
journal, March 2010


Thermal conductivity of periodic microporous silicon films
journal, February 2004

  • Song, David; Chen, Gang
  • Applied Physics Letters, Vol. 84, Issue 5
  • DOI: 10.1063/1.1642753

Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation
journal, January 2016


Mesoscale modeling of phononic thermal conductivity of porous Si: interplay between porosity, morphology and surface roughness
journal, February 2012

  • Romano, Giuseppe; Di Carlo, Aldo; Grossman, Jeffrey C.
  • Journal of Computational Electronics, Vol. 11, Issue 1
  • DOI: 10.1007/s10825-012-0390-2

Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene
journal, September 2014

  • Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl502865s

Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010

  • Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102931z

Effective thermal conductivity of particulate composites with interfacial thermal resistance
journal, May 1997

  • Nan, Ce-Wen; Birringer, R.; Clarke, David R.
  • Journal of Applied Physics, Vol. 81, Issue 10
  • DOI: 10.1063/1.365209

Nanostructuring expands thermal limits
journal, February 2007


Highly anisotropic thermal conductivity of arsenene: An ab initio study
journal, February 2016

  • Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.
  • Physical Review B, Vol. 93, Issue 8
  • DOI: 10.1103/PhysRevB.93.085424

Application of the Transverse Thermoelectric Effects
journal, September 2010


Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point
journal, May 1964


Toward phonon-boundary engineering in nanoporous materials
journal, July 2014

  • Romano, Giuseppe; Grossman, Jeffrey C.
  • Applied Physics Letters, Vol. 105, Issue 3
  • DOI: 10.1063/1.4891362

Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures
journal, January 2013


Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
journal, October 2015

  • Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit
  • Applied Physics Letters, Vol. 107, Issue 17
  • DOI: 10.1063/1.4934883

Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution
journal, July 2015

  • Romano, Giuseppe; Grossman, Jeffrey C.
  • Journal of Heat Transfer, Vol. 137, Issue 7
  • DOI: 10.1115/1.4029775

Ballistic Phonon Transport in Holey Silicon
journal, April 2015


Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Temperature and structure size dependence of the thermal conductivity of porous silicon
journal, September 2011


Works referencing / citing this record:

Reevaluating the suppression function for phonon transport in nanostructures by Monte Carlo techniques
journal, January 2019

  • Zeng, Yuqiang; Marconnet, Amy
  • Journal of Applied Physics, Vol. 125, Issue 3
  • DOI: 10.1063/1.5048626

Thermal conductivity anisotropy in nanostructures and nanostructured materials
journal, February 2018