DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Next generation molten NaI batteries for grid scale energy storage

Abstract

Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3–xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120–180 °C) and boasts an energy density of >150 Wh kg–1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. Here, this demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.

Authors:
ORCiD logo [1];  [2];  [1];  [2];  [2];  [2];  [1];  [1]; ORCiD logo [2];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Ceramatec Inc., Salt Lake City, UT (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE)
OSTI Identifier:
1465804
Alternate Identifier(s):
OSTI ID: 1550403
Report Number(s):
SAND-2017-7034J
Journal ID: ISSN 0378-7753; 663094
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 360; Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Sodium battery; NaSICON; Ion conductor; Grid scale; Energy storage

Citation Formats

Small, Leo J., Eccleston, Alexis, Lamb, Joshua, Read, Andrew C., Robins, Matthew, Meaders, Thomas, Ingersoll, David, Clem, Paul G., Bhavaraju, Sai, and Spoerke, Erik David. Next generation molten NaI batteries for grid scale energy storage. United States: N. p., 2017. Web. doi:10.1016/j.jpowsour.2017.06.038.
Small, Leo J., Eccleston, Alexis, Lamb, Joshua, Read, Andrew C., Robins, Matthew, Meaders, Thomas, Ingersoll, David, Clem, Paul G., Bhavaraju, Sai, & Spoerke, Erik David. Next generation molten NaI batteries for grid scale energy storage. United States. https://doi.org/10.1016/j.jpowsour.2017.06.038
Small, Leo J., Eccleston, Alexis, Lamb, Joshua, Read, Andrew C., Robins, Matthew, Meaders, Thomas, Ingersoll, David, Clem, Paul G., Bhavaraju, Sai, and Spoerke, Erik David. Thu . "Next generation molten NaI batteries for grid scale energy storage". United States. https://doi.org/10.1016/j.jpowsour.2017.06.038. https://www.osti.gov/servlets/purl/1465804.
@article{osti_1465804,
title = {Next generation molten NaI batteries for grid scale energy storage},
author = {Small, Leo J. and Eccleston, Alexis and Lamb, Joshua and Read, Andrew C. and Robins, Matthew and Meaders, Thomas and Ingersoll, David and Clem, Paul G. and Bhavaraju, Sai and Spoerke, Erik David},
abstractNote = {Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3–xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120–180 °C) and boasts an energy density of >150 Wh kg–1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. Here, this demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.},
doi = {10.1016/j.jpowsour.2017.06.038},
journal = {Journal of Power Sources},
number = C,
volume = 360,
place = {United States},
year = {Thu Jun 29 00:00:00 EDT 2017},
month = {Thu Jun 29 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemical energy storage in a sustainable modern society
journal, January 2014


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Sodium-Metal Halide and Sodium-Air Batteries
journal, June 2014


High temperature sodium batteries: status, challenges and future trends
journal, January 2013

  • Hueso, Karina B.; Armand, Michel; Rojo, Teófilo
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24086j

Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage
journal, August 2014

  • Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5578

The sodium/nickel chloride (ZEBRA) battery
journal, November 2001


A Sodium-Sulfur Secondary Battery
conference, February 1967

  • Kummer, Joseph T.; Weber, Neill
  • 1967 Automotive Engineering Congress and Exposition, SAE Technical Paper Series
  • DOI: 10.4271/670179

A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


Studies on the Thermal Breakdown of Common Li-Ion Battery Electrolyte Components
journal, January 2015

  • Lamb, Joshua; Orendorff, Christopher J.; Roth, E. Peter
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0651510jes

Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12
journal, July 2015


Structural Investigation of Monoclinic‐Rhombohedral Phase Transition in Na 3 Zr 2 Si 2 PO 12 and Doped NASICON
journal, June 2015

  • Jolley, Adam G.; Taylor, Daniel D.; Schreiber, Nathaniel J.
  • Journal of the American Ceramic Society, Vol. 98, Issue 9
  • DOI: 10.1111/jace.13692

Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
journal, May 2010


The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries
journal, October 2012


Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte
journal, December 2015


The Influences of Excess Sodium on Low-Temperature NaSICON Synthesis
journal, August 2014

  • Bell, Nelson S.; Edney, Cynthia; Wheeler, Jill S.
  • Journal of the American Ceramic Society, Vol. 97, Issue 12
  • DOI: 10.1111/jace.13167

Preparation and Processing Temperature Effects on Ion Conductivity in Solution Derived Sodium Zirconium Phosphate (NaZr 2 P 3 O 12 ) Thin Films
journal, December 2013

  • Meier, William; Apblett, Christopher; Ingersoll, David
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.068403jes

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

The Secondary Alkaline Zinc Electrode
journal, January 1991

  • McLarnon, Frank R.
  • Journal of The Electrochemical Society, Vol. 138, Issue 2
  • DOI: 10.1149/1.2085653

High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode
journal, May 2013

  • Zhao, Yu; Wang, Lina; Byon, Hye Ryung
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2907

Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life
journal, January 2016


Ionic Liquid Redox Catholyte for High Energy Efficiency, Low-Cost Energy Storage
journal, April 2015

  • Xue, Leigang; Tucker, Telpriore G.; Angell, C. Austen
  • Advanced Energy Materials, Vol. 5, Issue 12
  • DOI: 10.1002/aenm.201500271

A redox flow lithium battery based on the redox targeting reactions between LiFePO 4 and iodide
journal, January 2016

  • Huang, Qizhao; Yang, Jing; Ng, Chee Boon
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03764F

A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures
journal, March 2007


Thermal runaway caused fire and explosion of lithium ion battery
journal, June 2012


A review on prognostics and health monitoring of Li-ion battery
journal, August 2011


Safety mechanisms in lithium-ion batteries
journal, April 2006


An Ambient Temperature Molten Sodium–Vanadium Battery with Aqueous Flowing Catholyte
journal, January 2016

  • Liu, Caihong; Shamie, Jack S.; Shaw, Leon L.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 2
  • DOI: 10.1021/acsami.5b11503

Works referencing / citing this record:

Zirconium‐Based Materials for Electrochemical Energy Storage
journal, February 2019


Enhanced alkaline stability in a hafnium-substituted NaSICON ion conductor
journal, January 2018

  • Small, Leo J.; Wheeler, Jill S.; Ihlefeld, Jon F.
  • Journal of Materials Chemistry A, Vol. 6, Issue 20
  • DOI: 10.1039/c7ta09924j

Electrochemistry of the NaI-AlCl 3 Molten Salt System for Use as Catholyte in Sodium Metal Batteries
journal, January 2018

  • Percival, Stephen J.; Small, Leo J.; Spoerke, Erik D.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.1191814jes