DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Varying stopping and self-focusing of intense proton beams as they heat solid density matter

Abstract

For this study, the transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

Authors:
 [1]; ORCiD logo [1];  [1];  [2];  [3];  [1]
  1. Univ. of California, San Diego, CA (United States). Center for Energy Research
  2. General Atomics, San Diego, CA (United States)
  3. Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1465197
Alternate Identifier(s):
OSTI ID: 1247017
Grant/Contract Number:  
NA0002034; AC52-07NA27344; FA9550-14-1-0346
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 4; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; collisional energy loss; Maxwell equations; electrical resistivity; protons; current density; ion beams; collective effects; plasma ionization; focused ion beam technology; magnetic fields

Citation Formats

Kim, J., McGuffey, C., Qiao, B., Wei, M. S., Grabowski, P. E., and Beg, F. N. Varying stopping and self-focusing of intense proton beams as they heat solid density matter. United States: N. p., 2016. Web. doi:10.1063/1.4945617.
Kim, J., McGuffey, C., Qiao, B., Wei, M. S., Grabowski, P. E., & Beg, F. N. Varying stopping and self-focusing of intense proton beams as they heat solid density matter. United States. https://doi.org/10.1063/1.4945617
Kim, J., McGuffey, C., Qiao, B., Wei, M. S., Grabowski, P. E., and Beg, F. N. Tue . "Varying stopping and self-focusing of intense proton beams as they heat solid density matter". United States. https://doi.org/10.1063/1.4945617. https://www.osti.gov/servlets/purl/1465197.
@article{osti_1465197,
title = {Varying stopping and self-focusing of intense proton beams as they heat solid density matter},
author = {Kim, J. and McGuffey, C. and Qiao, B. and Wei, M. S. and Grabowski, P. E. and Beg, F. N.},
abstractNote = {For this study, the transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.},
doi = {10.1063/1.4945617},
journal = {Physics of Plasmas},
number = 4,
volume = 23,
place = {United States},
year = {Tue Apr 12 00:00:00 EDT 2016},
month = {Tue Apr 12 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electron beam hollowing in laser–solid interactions
journal, July 2006

  • Davies, J. R.; Green, J. S.; Norreys, P. A.
  • Plasma Physics and Controlled Fusion, Vol. 48, Issue 8
  • DOI: 10.1088/0741-3335/48/8/010

Correlated ion stopping in plasmas
journal, July 1997


An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

A review of focused ion beam applications in microsystem technology
journal, July 2001

  • Reyntjens, Steve; Puers, Robert
  • Journal of Micromechanics and Microengineering, Vol. 11, Issue 4
  • DOI: 10.1088/0960-1317/11/4/301

Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie
journal, January 1930


Physics of neutralization of intense high-energy ion beam pulses by electrons
journal, May 2010

  • Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3335766

A unified self-consistent model for calculating ion stopping power in ICF plasma
journal, August 1998

  • Wang, P.; Mehlhorn, T. M.; MacFarlane, J. J.
  • Physics of Plasmas, Vol. 5, Issue 8
  • DOI: 10.1063/1.873022

Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie
journal, January 1933


Integrated simulation of the generation and transport of proton beams from laser-target interaction
journal, June 2006

  • Welch, D. R.; Rose, D. V.; Cuneo, M. E.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2207587

Shell corrections in stopping powers
journal, April 2002


Focusing of Relativistic Electrons in Dense Plasma Using a Resistivity-Gradient-Generated Magnetic Switchyard
journal, March 2012


Molecular Dynamics Simulations of Classical Stopping Power
journal, November 2013


Stopping of energetic light ions in elemental matter
journal, February 1999

  • Ziegler, J. F.
  • Journal of Applied Physics, Vol. 85, Issue 3
  • DOI: 10.1063/1.369844

Two-stream stability properties of the return-current layer for intense ion beam propagation through background plasma
journal, September 2009

  • Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail
  • Physics of Plasmas, Vol. 16, Issue 9
  • DOI: 10.1063/1.3213566

Measurement of Charged-Particle Stopping in Warm Dense Plasma
journal, May 2015


Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon
journal, May 1997

  • Stolk, P. A.; Gossmann, H. -J.; Eaglesham, D. J.
  • Journal of Applied Physics, Vol. 81, Issue 9
  • DOI: 10.1063/1.364452

Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers
journal, January 2013


Nuclear stopping power in warm and hot dense matter
journal, January 2013

  • Faussurier, Gérald; Blancard, Christophe; Gauthier, Maxence
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4774065

Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers
journal, September 2012

  • Petrov, G. M.; Higginson, D. P.; Davis, J.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4751460

Stopping power modeling in warm and hot dense matter
journal, September 2013


Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber
journal, May 2002

  • Welch, D. R.; Rose, D. V.; Oliver, B. V.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1448831

A finite material temperature model for ion energy deposition in ion‐driven inertial confinement fusion targets
journal, November 1981

  • Mehlhorn, Thomas A.
  • Journal of Applied Physics, Vol. 52, Issue 11
  • DOI: 10.1063/1.328602

Equation-of-State Measurement of Dense Plasmas Heated With Fast Protons
journal, July 2008


Theory and simulation of heavy ion stopping in plasma
journal, June 2009


Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids
journal, October 2000


Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition
journal, March 2001


Electric and magnetic field generation and target heating by laser-generated fast electrons
journal, November 2003


Super-intense quasi-neutral proton beams interacting with plasma: a numerical investigation
journal, February 2004


Fast electron energy transport in solid density and compressed plasma
journal, April 2014


Fast ignition with laser-driven proton and ion beams
journal, April 2014


Heat flux effects on magnetic field dynamics in solid density plasmas traversed by relativistic electron beams
journal, July 2013


Electron-Ion Equilibration in Ultrafast Heated Graphite
journal, April 2014


Focusing of short-pulse high-intensity laser-accelerated proton beams
journal, December 2011

  • Bartal, Teresa; Foord, Mark E.; Bellei, Claudio
  • Nature Physics, Vol. 8, Issue 2
  • DOI: 10.1038/nphys2153

Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions
journal, October 2011

  • Higginson, D. P.; McNaney, J. M.; Swift, D. C.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3654040

Works referencing / citing this record:

Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes
journal, January 2018

  • Wu, D.; He, X. T.; Yu, W.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.41

Anomalous material-dependent transport of focused, laser-driven proton beams
journal, December 2018


Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials
journal, July 2019


Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes
text, January 2018

  • Wu, D.; He, X. T.; Yu, W.
  • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
  • DOI: 10.15120/gsi-2018-00994

Anomalous material-dependent transport of focused, laser-driven proton beams
journal, December 2018