DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The materials genome in action: identifying the performance limits for methane storage

Abstract

Analogous to the way the Human Genome Project advanced an array of biological sciences by mapping the human genome, the Materials Genome Initiative aims to enhance our understanding of the fundamentals of materials science by providing the information we need to accelerate the development of new materials. This approach is particularly applicable to recently developed classes of nanoporous materials, such as metal–organic frameworks (MOFs), which are synthesized from a limited set of molecular building blocks that can be combined to generate a very large number of different structures. In this Perspective, we describe how a materials genome approach can be used to search for high-performance adsorbent materials to store natural gas in a vehicular fuel tank. Drawing upon recent reports of large databases of existing and predicted nanoporous materials generated in silico, we have collected and compared on a consistent basis the methane uptake in over 650 000 materials based on the results of molecular simulation. The data that we have collected provide candidate structures for synthesis, reveal relationships between structural characteristics and performance, and suggest that it may be difficult to reach the current Advanced Research Project Agency-Energy (ARPA-E) target for natural gas storage.

Authors:
 [1];  [2];  [3];  [4];  [3];  [5];  [6];  [7];  [8];  [8];  [4];  [3];  [9]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  2. Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering
  3. Northwestern Univ., Evanston, IL (United States). Dept. of Chemical and Biological Engineering
  4. Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; IBM Research-Almaden, San Jose, CA (United States). Watson Group
  6. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  7. Rice Univ., Houston, TX (United States). Dept. of Bioengineering and Dept. of Physics and Astronomy
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
  9. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering and Dept. of Chemistry; Federal Inst. of Technology, Lausanne (Switzerland). Lab. of Molecular Simulation and Inst. of Chemical Sciences and Engineering
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States). Nanoporous Materials Genome Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division (NMGC)
OSTI Identifier:
1464959
Grant/Contract Number:  
FG02-12ER16362; SC0008688
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 4; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 97 MATHEMATICS AND COMPUTING; 03 NATURAL GAS

Citation Formats

Simon, Cory M., Kim, Jihan, Gomez-Gualdron, Diego A., Camp, Jeffrey S., Chung, Yongchul G., Martin, Richard L., Mercado, Rocio, Deem, Michael W., Gunter, Dan, Haranczyk, Maciej, Sholl, David S., Snurr, Randall Q., and Smit, Berend. The materials genome in action: identifying the performance limits for methane storage. United States: N. p., 2015. Web. doi:10.1039/C4EE03515A.
Simon, Cory M., Kim, Jihan, Gomez-Gualdron, Diego A., Camp, Jeffrey S., Chung, Yongchul G., Martin, Richard L., Mercado, Rocio, Deem, Michael W., Gunter, Dan, Haranczyk, Maciej, Sholl, David S., Snurr, Randall Q., & Smit, Berend. The materials genome in action: identifying the performance limits for methane storage. United States. https://doi.org/10.1039/C4EE03515A
Simon, Cory M., Kim, Jihan, Gomez-Gualdron, Diego A., Camp, Jeffrey S., Chung, Yongchul G., Martin, Richard L., Mercado, Rocio, Deem, Michael W., Gunter, Dan, Haranczyk, Maciej, Sholl, David S., Snurr, Randall Q., and Smit, Berend. Mon . "The materials genome in action: identifying the performance limits for methane storage". United States. https://doi.org/10.1039/C4EE03515A. https://www.osti.gov/servlets/purl/1464959.
@article{osti_1464959,
title = {The materials genome in action: identifying the performance limits for methane storage},
author = {Simon, Cory M. and Kim, Jihan and Gomez-Gualdron, Diego A. and Camp, Jeffrey S. and Chung, Yongchul G. and Martin, Richard L. and Mercado, Rocio and Deem, Michael W. and Gunter, Dan and Haranczyk, Maciej and Sholl, David S. and Snurr, Randall Q. and Smit, Berend},
abstractNote = {Analogous to the way the Human Genome Project advanced an array of biological sciences by mapping the human genome, the Materials Genome Initiative aims to enhance our understanding of the fundamentals of materials science by providing the information we need to accelerate the development of new materials. This approach is particularly applicable to recently developed classes of nanoporous materials, such as metal–organic frameworks (MOFs), which are synthesized from a limited set of molecular building blocks that can be combined to generate a very large number of different structures. In this Perspective, we describe how a materials genome approach can be used to search for high-performance adsorbent materials to store natural gas in a vehicular fuel tank. Drawing upon recent reports of large databases of existing and predicted nanoporous materials generated in silico, we have collected and compared on a consistent basis the methane uptake in over 650 000 materials based on the results of molecular simulation. The data that we have collected provide candidate structures for synthesis, reveal relationships between structural characteristics and performance, and suggest that it may be difficult to reach the current Advanced Research Project Agency-Energy (ARPA-E) target for natural gas storage.},
doi = {10.1039/C4EE03515A},
journal = {Energy & Environmental Science},
number = 4,
volume = 8,
place = {United States},
year = {Mon Jan 12 00:00:00 EST 2015},
month = {Mon Jan 12 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 252 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In silico screening of carbon-capture materials
journal, May 2012

  • Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3336

A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity
journal, April 2014

  • Li, Bin; Wen, Hui-Min; Wang, Hailong
  • Journal of the American Chemical Society, Vol. 136, Issue 17
  • DOI: 10.1021/ja501810r

Methane storage in advanced porous materials
journal, January 2012

  • Makal, Trevor A.; Li, Jian-Rong; Lu, Weigang
  • Chemical Society Reviews, Vol. 41, Issue 23
  • DOI: 10.1039/c2cs35251f

Methane storage in metal–organic frameworks
journal, January 2014

  • He, Yabing; Zhou, Wei; Qian, Guodong
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00032C

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites
journal, March 2012


Data mining and accelerated electronic structure theory as a tool in the search for new functional materials
journal, February 2009


Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane
journal, September 2014

  • Gomez-Gualdron, Diego A.; Gutov, Oleksii V.; Krungleviciute, Vaiva
  • Chemistry of Materials, Vol. 26, Issue 19
  • DOI: 10.1021/cm502304e

Ab initio carbon capture in open-site metal–organic frameworks
journal, August 2012

  • Dzubak, Allison L.; Lin, Li-Chiang; Kim, Jihan
  • Nature Chemistry, Vol. 4, Issue 10
  • DOI: 10.1038/nchem.1432

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Optimum Conditions for Adsorptive Storage
journal, February 2006

  • Bhatia, Suresh K.; Myers, Alan L.
  • Langmuir, Vol. 22, Issue 4
  • DOI: 10.1021/la0523816

Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks
journal, April 2013

  • Fernandez, Michael; Woo, Tom K.; Wilmer, Christopher E.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp4006422

Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials
journal, March 2014

  • Gómez-Gualdrón, Diego A.; Wilmer, Christopher E.; Farha, Omar K.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp502359q

Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
journal, October 2014

  • Chung, Yongchul G.; Camp, Jeffrey; Haranczyk, Maciej
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502594j

Methane and the greenhouse-gas footprint of natural gas from shale formations: A letter
journal, April 2011


Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
journal, February 2012


Methane storage in metal organic frameworks
journal, January 2012

  • Konstas, Kristina; Osl, Theresa; Yang, Yunxia
  • Journal of Materials Chemistry, Vol. 22, Issue 33
  • DOI: 10.1039/c2jm32719h

Force Field Parametrization through Fitting on Inflection Points in Isotherms
journal, August 2004


New materials for methane capture from dilute and medium-concentration sources
journal, April 2013

  • Kim, Jihan; Maiti, Amitesh; Lin, Li-Chiang
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2697

Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations
journal, May 2012


Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges
journal, July 2013

  • Peng, Yang; Krungleviciute, Vaiva; Eryazici, Ibrahim
  • Journal of the American Chemical Society, Vol. 135, Issue 32, p. 11887-11894
  • DOI: 10.1021/ja4045289

New cubic perovskites for one- and two-photon water splitting using the computational materials repository
journal, January 2012

  • Castelli, Ivano E.; Landis, David D.; Thygesen, Kristian S.
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22341d

Optimizing nanoporous materials for gas storage
journal, January 2014

  • Simon, Cory M.; Kim, Jihan; Lin, Li-Chiang
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 12
  • DOI: 10.1039/c3cp55039g

Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials
journal, October 2010

  • Meek, Scott T.; Greathouse, Jeffery A.; Allendorf, Mark D.
  • Advanced Materials, Vol. 23, Issue 2
  • DOI: 10.1002/adma.201002854

Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks
journal, September 2011

  • Getman, Rachel B.; Bae, Youn-Sang; Wilmer, Christopher E.
  • Chemical Reviews, Vol. 112, Issue 2, p. 703-723
  • DOI: 10.1021/cr200217c

Screening for high-performance piezoelectrics using high-throughput density functional theory
journal, July 2011


Construction and Characterization of Structure Models of Crystalline Porous Polymers
journal, April 2014

  • Martin, Richard Luis; Haranczyk, Maciej
  • Crystal Growth & Design, Vol. 14, Issue 5
  • DOI: 10.1021/cg500158c

Greater focus needed on methane leakage from natural gas infrastructure
journal, April 2012

  • Alvarez, R. A.; Pacala, S. W.; Winebrake, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 17
  • DOI: 10.1073/pnas.1202407109

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Computational Discovery of New Zeolite-Like Materials
journal, October 2009

  • Deem, Michael W.; Pophale, Ramdas; Cheeseman, Phillip A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 51
  • DOI: 10.1021/jp906984z

Quantitative Structure–Property Relationship Modeling of Diverse Materials Properties
journal, January 2012

  • Le, Tu; Epa, V. Chandana; Burden, Frank R.
  • Chemical Reviews, Vol. 112, Issue 5
  • DOI: 10.1021/cr200066h

Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials
journal, June 2012

  • Kim, Jihan; Smit, Berend
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 7
  • DOI: 10.1021/ct3003699

Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules
journal, April 2013

  • Martin, Richard L.; Lin, Li-Chiang; Jariwala, Kuldeep
  • The Journal of Physical Chemistry C, Vol. 117, Issue 23
  • DOI: 10.1021/jp401920y

In silico Design of Porous Polymer Networks: High-Throughput Screening for Methane Storage Materials
journal, March 2014

  • Martin, Richard L.; Simon, Cory M.; Smit, Berend
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja4123939

Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials
journal, February 2012


A thermodynamic description of the adsorption-induced structural transitions in flexible MIL-53 metal-organic framework
journal, February 2014


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

A series of metal–organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity
journal, January 2013

  • He, Yabing; Zhou, Wei; Yildirim, Taner
  • Energy & Environmental Science, Vol. 6, Issue 9
  • DOI: 10.1039/c3ee41166d

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008

  • Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
  • Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
  • DOI: 10.1021/ja8057953

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

A database of new zeolite-like materials
journal, January 2011

  • Pophale, Ramdas; Cheeseman, Phillip A.; Deem, Michael W.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 27
  • DOI: 10.1039/c0cp02255a

United Atom Force Field for Alkanes in Nanoporous Materials
journal, August 2004

  • Dubbeldam, D.; Calero, S.; Vlugt, T. J. H.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 33
  • DOI: 10.1021/jp0376727

On the Flexibility of Metal–Organic Frameworks
journal, January 2014

  • Sarkisov, Lev; Martin, Richard L.; Haranczyk, Maciej
  • Journal of the American Chemical Society, Vol. 136, Issue 6
  • DOI: 10.1021/ja411673b

Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy
journal, November 2002

  • Serre, Christian; Millange, Franck; Thouvenot, Christelle
  • Journal of the American Chemical Society, Vol. 124, Issue 45, p. 13519-13526
  • DOI: 10.1021/ja0276974

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Expanded Organic Building Units for the Construction of Highly Porous Metal-Organic Frameworks
journal, September 2013

  • Kong, Guo-Qiang; Han, Zhi-Da; He, Yabing
  • Chemistry - A European Journal, Vol. 19, Issue 44
  • DOI: 10.1002/chem.201302515

Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

The Cambridge Structural Database: a quarter of a million crystal structures and rising
journal, May 2002


High Methane Storage Capacity in Aluminum Metal–Organic Frameworks
journal, February 2014

  • Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu
  • Journal of the American Chemical Society, Vol. 136, Issue 14, p. 5271-5274
  • DOI: 10.1021/ja501606h

Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally
journal, May 2012

  • Chen, Hailong; Hautier, Geoffroy; Jain, Anubhav
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm203243x

Works referencing / citing this record:

Emerging Multifunctional Metal-Organic Framework Materials
journal, July 2016


Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications
journal, November 2017

  • Burtch, Nicholas C.; Heinen, Jurn; Bennett, Thomas D.
  • Advanced Materials, Vol. 30, Issue 37
  • DOI: 10.1002/adma.201704124

In Silico Screening of MOFs with open copper sites for C 2 H 2 /CO 2 separation
journal, September 2018

  • Zhang, Ce; Wang, Lei; Maurin, Guillaume
  • AIChE Journal, Vol. 64, Issue 11
  • DOI: 10.1002/aic.16376

A Metal-Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane
journal, March 2016


Tuning the Gate‐Opening Pressure in a Switching pcu Coordination Network, X‐pcu‐5‐Zn, by Pillar‐Ligand Substitution
journal, October 2019

  • Zhu, Ai‐Xin; Yang, Qing‐Yuan; Mukherjee, Soumya
  • Angewandte Chemie, Vol. 131, Issue 50
  • DOI: 10.1002/ange.201909977

Tuning the Gate-Opening Pressure in a Switching pcu Coordination Network, X-pcu-5-Zn, by Pillar-Ligand Substitution
journal, October 2019

  • Zhu, Ai-Xin; Yang, Qing-Yuan; Mukherjee, Soumya
  • Angewandte Chemie International Edition, Vol. 58, Issue 50
  • DOI: 10.1002/anie.201909977

A Multifaceted Study of Methane Adsorption in Metal-Organic Frameworks by Using Three Complementary Techniques
journal, May 2018

  • Zhang, Yue; Lucier, Bryan E. G.; Fischer, Michael
  • Chemistry - A European Journal, Vol. 24, Issue 31
  • DOI: 10.1002/chem.201800424

User applications driven by the community contribution framework MPContribs in the Materials Project: MPCONTRIBS-DRIVEN USER APPLICATIONS
journal, October 2015

  • Huck, P.; Gunter, D.; Cholia, S.
  • Concurrency and Computation: Practice and Experience, Vol. 28, Issue 7
  • DOI: 10.1002/cpe.3698

Reticular Chemistry of Multifunctional Metal-Organic Framework Materials
journal, July 2018

  • Lin, Rui-Biao; Xiang, Shengchang; Li, Bin
  • Israel Journal of Chemistry, Vol. 58, Issue 9-10
  • DOI: 10.1002/ijch.201800054

Can artificial intelligence create the next wonder material?
journal, May 2016


Methane storage in flexible metal–organic frameworks with intrinsic thermal management
journal, October 2015

  • Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.
  • Nature, Vol. 527, Issue 7578
  • DOI: 10.1038/nature15732

Functional materials discovery using energy–structure–function maps
journal, March 2017

  • Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz
  • Nature, Vol. 543, Issue 7647
  • DOI: 10.1038/nature21419

Quantifying similarity of pore-geometry in nanoporous materials
journal, May 2017

  • Lee, Yongjin; Barthel, Senja D.; Dłotko, Paweł
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15396

The role of metal–organic frameworks in a carbon-neutral energy cycle
journal, April 2016


A sol–gel monolithic metal–organic framework with enhanced methane uptake
journal, December 2017

  • Tian, Tian; Zeng, Zhixin; Vulpe, Diana
  • Nature Materials, Vol. 17, Issue 2
  • DOI: 10.1038/nmat5050

Computer-aided discovery of a metal–organic framework with superior oxygen uptake
journal, April 2018


Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks
journal, November 2018


Materials genomics methods for high-throughput construction of COFs and targeted synthesis
journal, December 2018


Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks
journal, April 2019


Methane storage in nanoporous material at supercritical temperature over a wide range of pressures
journal, September 2016

  • Wu, Keliu; Chen, Zhangxin; Li, Xiangfang
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33461

Cutting the cost of carbon capture: a case for carbon capture and utilization
journal, January 2016

  • Joos, Lennart; Huck, Johanna M.; Van Speybroeck, Veronique
  • Faraday Discuss., Vol. 192
  • DOI: 10.1039/c6fd00031b

Materials chemistry toward electrochemical energy storage
journal, January 2016

  • Chen, Kunfeng; Xue, Dongfeng
  • Journal of Materials Chemistry A, Vol. 4, Issue 20
  • DOI: 10.1039/c6ta01527a

Balancing gravimetric and volumetric hydrogen density in MOFs
journal, January 2017

  • Ahmed, Alauddin; Liu, Yiyang; Purewal, Justin
  • Energy & Environmental Science, Vol. 10, Issue 11
  • DOI: 10.1039/c7ee02477k

Recyclable switching between nonporous and porous phases of a square lattice ( sql ) topology coordination network
journal, January 2018

  • Wang, Shi-Qiang; Yang, Qing-Yuan; Mukherjee, Soumya
  • Chemical Communications, Vol. 54, Issue 51
  • DOI: 10.1039/c8cc03838d

Computational design of tetrazolate-based metal–organic frameworks for CH 4 storage
journal, January 2018

  • Wu, Xuanjun; Peng, Liang; Xiang, Sichen
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 48
  • DOI: 10.1039/c8cp05724a

Predicting performance limits of methane gas storage in zeolites with an artificial neural network
journal, January 2019

  • Lee, Sangwon; Kim, Baekjun; Kim, Jihan
  • Journal of Materials Chemistry A, Vol. 7, Issue 6
  • DOI: 10.1039/c8ta12208c

Rational modifications of PCN-700 to induce electrical conductivity: a computational study
journal, January 2020

  • Chong, Sanggyu; Kim, Jihan
  • Dalton Transactions, Vol. 49, Issue 1
  • DOI: 10.1039/c9dt03865e

Pillared-layered metal–organic frameworks for mechanical energy storage applications
journal, January 2019

  • Wieme, Jelle; Rogge, Sven M. J.; Yot, Pascal G.
  • Journal of Materials Chemistry A, Vol. 7, Issue 39
  • DOI: 10.1039/c9ta01586h

Large-scale computational assembly of ionic liquid/MOF composites: synergistic effect in the wire-tube conformation for efficient CO 2 /CH 4 separation
journal, January 2019

  • Lan, Youshi; Yan, Tongan; Tong, Minman
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/c9ta01752f

Prediction of hydrogen adsorption in nanoporous materials from the energy distribution of adsorption sites
journal, August 2019


In silico discovery of metal-organic frameworks for precombustion CO 2 capture using a genetic algorithm
journal, October 2016

  • Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng
  • Science Advances, Vol. 2, Issue 10
  • DOI: 10.1126/sciadv.1600909

Materials science with large-scale data and informatics: Unlocking new opportunities
journal, May 2016

  • Hill, Joanne; Mulholland, Gregory; Persson, Kristin
  • MRS Bulletin, Vol. 41, Issue 5
  • DOI: 10.1557/mrs.2016.93

Data-centric science for materials innovation
journal, September 2018

  • Tanaka, Isao; Rajan, Krishna; Wolverton, Christopher
  • MRS Bulletin, Vol. 43, Issue 9
  • DOI: 10.1557/mrs.2018.205

From molecules to dollars: integrating molecular design into thermo-economic process design using consistent thermodynamic modeling
text, January 2017

  • Schilling, Johannes; Tillmanns, Dominik Sebastian Josef; Lampe, Matthias
  • RWTH Aachen University
  • DOI: 10.18154/rwth-2017-06444

Selective Adsorption of CH4/N2 on Ni-based MOF/SBA-15 Composite Materials
journal, January 2019


A Porous Carbon with Excellent Gas Storage Properties from Waste Polystyrene
journal, May 2019

  • Gatti, Giorgio; Errahali, Mina; Tei, Lorenzo
  • Nanomaterials, Vol. 9, Issue 5
  • DOI: 10.3390/nano9050726

Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage
journal, December 2016

  • Lin, Yichao; Kong, Chunglong; Zhang, Qiuju
  • Advanced Energy Materials, Vol. 7, Issue 4
  • DOI: 10.1002/aenm.201601296

From molecules to dollars: integrating molecular design into thermo-economic process design using consistent thermodynamic modeling
journal, January 2017

  • Schilling, J.; Tillmanns, D.; Lampe, M.
  • Molecular Systems Design & Engineering, Vol. 2, Issue 3
  • DOI: 10.1039/c7me00026j

A Metal-Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane
journal, March 2016

  • Lin, Jiao-Min; He, Chun-Ting; Liu, Yan
  • Angewandte Chemie International Edition, Vol. 55, Issue 15
  • DOI: 10.1002/anie.201511006

Computer-aided discovery of a metal-organic framework with superior oxygen uptake.
text, January 2018

  • Moghadam, Peyman Z.; Islamoglu, Timur; Goswami, Subhadip
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.30869