DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries

Abstract

Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6-xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and novel electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x=3 and x=6 compositions can be understood by assuming the alloy separates into Brrich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical.

Authors:
ORCiD logo [1];  [2];  [3];  [3];  [3];  [3]
  1. Georgetown Univ., Washington, DC (United States); San Francisco State Univ., CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. San Francisco State Univ., CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1463832
Alternate Identifier(s):
OSTI ID: 1422837
Report Number(s):
LLNL-JRNL-740955
Journal ID: ISSN 2166-532X; 895123
Grant/Contract Number:  
AC52-07NA27344; 15-ERD-022
Resource Type:
Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 4; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zevgolis, Alysia, Wood, Brandon C., Mehmedović, Zerina, Hall, Alex T., Alves, Thomaz C., and Adelstein, Nicole. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries. United States: N. p., 2018. Web. doi:10.1063/1.5011378.
Zevgolis, Alysia, Wood, Brandon C., Mehmedović, Zerina, Hall, Alex T., Alves, Thomaz C., & Adelstein, Nicole. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries. United States. https://doi.org/10.1063/1.5011378
Zevgolis, Alysia, Wood, Brandon C., Mehmedović, Zerina, Hall, Alex T., Alves, Thomaz C., and Adelstein, Nicole. Mon . "Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries". United States. https://doi.org/10.1063/1.5011378. https://www.osti.gov/servlets/purl/1463832.
@article{osti_1463832,
title = {Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries},
author = {Zevgolis, Alysia and Wood, Brandon C. and Mehmedović, Zerina and Hall, Alex T. and Alves, Thomaz C. and Adelstein, Nicole},
abstractNote = {Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6-xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and novel electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x=3 and x=6 compositions can be understood by assuming the alloy separates into Brrich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical.},
doi = {10.1063/1.5011378},
journal = {APL Materials},
number = 4,
volume = 6,
place = {United States},
year = {Mon Feb 26 00:00:00 EST 2018},
month = {Mon Feb 26 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of homovalent (I−Br−) ion substitution on the ionic conductivity of LiI1−x Brx systems
journal, March 1985


Ionic Conductor Composites: Theory and Materials
journal, October 2000


Defect chemistry at interfaces
journal, May 1994


Substitution effect of ionic conductivity in lithium ion conductor, LI3INBR6−xCLx
journal, September 2008


Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo -Borate Solid Electrolytes
journal, October 2017


Conductivity enhancement and microstructure in AgCl/AgI composites
journal, April 1992


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Zur Quantentheorie der Molekeln
journal, January 1927


Local structure of the superionic conducting α-AgI type AgI1−xBrx solid-solution
journal, August 1988


Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics
journal, December 2016


Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na 3 OBr and Na 4 OI 2 : An in Situ Neutron Diffraction Study
journal, June 2016


Role of Dynamically Frustrated Bond Disorder in a Li + Superionic Solid Electrolyte
journal, October 2016


Rational Composition Optimization of the Lithium-Rich Li 3 OCl 1– x Br x Anti-Perovskite Superionic Conductors
journal, May 2015


Interfacial Challenges in Solid-State Li Ion Batteries
journal, October 2015

  • Luntz, Alan C.; Voss, Johannes; Reuter, Karsten
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b02352

Modeling space charge layer interaction and conductivity enhancement in nanoionic composites
journal, October 2011


Fast ion transport in silver halide solid solutions and multiphase systems
journal, October 1980

  • Shahi, K.; Wagner, J. B.
  • Applied Physics Letters, Vol. 37, Issue 8
  • DOI: 10.1063/1.92023

Structure and Dynamics of Li3InBr6 and NaInBr4 by Means of Nuclear Magnetic Resonance
journal, January 1998

  • Tomita, Yasumasa; Yamada, Koji; Ohki, Hiroshi
  • Zeitschrift für Naturforschung A, Vol. 53, Issue 6-7
  • DOI: 10.1515/zna-1998-6-730

Electrochemical Analysis of Anomalous Conductivity Effects in the AgClAgI Two Phase System
journal, February 1992

  • Lauer, Ute; Maier, Joachim
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 96, Issue 2
  • DOI: 10.1002/bbpc.19920960202

Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li 6 PS 5 X (X = Cl, Br, I)
journal, July 2017

  • Kraft, Marvin A.; Culver, Sean P.; Calderon, Mario
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b06327

New Lithium Ion Conductor Li 3 InBr 6 Studied by 7 Li NMR
journal, March 1998

  • Tomita, Yasumasa; Fuji-i, Aya; Ohki, Hiroshi
  • Chemistry Letters, Vol. 27, Issue 3
  • DOI: 10.1246/cl.1998.223

Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility
journal, January 2008

  • Deiseroth, Hans-Jörg; Kong, Shiao-Tong; Eckert, Hellmut
  • Angewandte Chemie International Edition, Vol. 47, Issue 4
  • DOI: 10.1002/anie.200703900

Superionic Conductivity in Lithium-Rich Anti-Perovskites
journal, August 2012

  • Zhao, Yusheng; Daemen, Luke L.
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305709z

Zur Quantentheorie der Molekeln
journal, January 1924


Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility
journal, January 2008

  • Deiseroth, Hans-Jörg; Kong, Shiao-Tong; Eckert, Hellmut
  • Angewandte Chemie, Vol. 120, Issue 4
  • DOI: 10.1002/ange.200703900

Maximally localized Wannier functions: Theory and applications
text, January 2011


Works referencing / citing this record:

Enhancing sodium ionic conductivity in tetragonal-Na 3 PS 4 by halogen doping: a first principles investigation
journal, January 2018

  • Huang, He; Wu, Hong-Hui; Wang, Xinjiang
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 31
  • DOI: 10.1039/c8cp02383b