
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTE, VOL. XX, NO. YY, MARCH 2016 1

Machine Learning-Based Temperature
Prediction for Runtime Thermal Management

across System Components
Kaicheng Zhang, Akhil Guliani, Seda Ogrenci-Memik, Gokhan Memik, Kazutomo Yoshii, Rajesh Sankaran,

Pete Beckman

Abstract—Elevated temperatures limit the peak performance of systems because of frequent interventions by thermal throttling.
Non-uniform thermal states across system nodes also cause performance variation within seemingly equivalent nodes leading to
significant degradation of overall performance. In this paper we present a framework for creating a lightweight thermal prediction
system suitable for run-time management decisions. We pursue two avenues to explore optimized lightweight thermal predictors. First,
we use feature selection algorithms to improve the performance of previously designed machine learning methods. Second, we
develop alternative methods using neural network and linear regression-based methods to perform a comprehensive comparative
study of prediction methods. We show that our optimized models achieve improved performance with better prediction accuracy and
lower overhead as compared with the Gaussian process model proposed previously. Specifically we present a reduced version of the
Gaussian process model, a neural network–based model, and a linear regression–based model. Using the optimization methods, we
are able to reduce the average prediction errors in the Gaussian process from 4.2 ◦C to 2.9 ◦C. We also show that the newly developed
models using neural network and Lasso linear regression have average prediction errors of 2.9 ◦C and 3.8 ◦C respectively. The
prediction overheads are 0.22ms, 0.097ms, and 0.026ms per prediction for reduced Gaussian process, neural network, and Lasso
linear regression models, respectively , compared with 0.57ms per prediction for the previous Gaussian process model. We have
implemented our proposed thermal prediction models on a two-node system configuration to help identify the optimal task placement.
The task placement identified by the models reduces the average system temperature by up to 11.9 ◦C without any performance
degradation. Furthermore, these models respectively achieve 75%, 82.5%, and 74.17% success rates in correctly pointing to those
task placements with better thermal response, compared with 72.5% success for the original model in achieving the same objective.
Finally, we extended our analysis to a 16-node system and we were able to train models and execute them in real time to guide task
migration and achieve on average 17% reduction in the overall system cooling power.

Index Terms—thermal modeling, many-core processors, operating systems, high performance computing systems
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1 INTRODUCTION

THERMAL implications are becoming increasingly influ-
ential in determining the cost of operating a high-

performance computing (HPC) system. On one hand, mod-
ern supercomputers consume an enormous amount of
power, where a significant fraction is dedicated for cool-
ing [1]. Tianhe-2, the No.1 system currently in the top500 list,
consumes up to 17 MW with approximately an additional
7MW for cooling. This places current HPC systems and
future exascale systems under immense pressure to manage
the cooling complexity and cost of the resulting heat output.
Roadmaps target the design of hardware and system soft-
ware to draw electrical power of 20 MW using 100 million
processors in the 2020 timeframe [2]. One current trend is
allowing warmer inlet water temperatures for the liquid
cooling commonly used in HPC systems. Several HPC sys-
tems operate under raised inlet coolant temperatures. These
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systems aim to aggressively exploit the thermal headroom
(i.e., guard band) in the server chips.

On the other hand, chips manufactured with advanced
processing technologies exhibit increasing variation in per-
formance and vulnerability to thermal stress. All major
processor manufacturers correlate the maximum expected
performance with the thermal design power (TDP), which
places conservative bounds (by either limiting clock fre-
quency or imposing power caps) on achievable performance
to ensure reliable and consistent performance across all
system nodes. Pushing the thermal headroom margins in
an effort to minimize cooling cost at the expense of the
underlying hardware then becomes a source of performance
bottlenecks.

Thermal stress induced on hardware by these increas-
ingly aggressive management schemes needs to be miti-
gated. Therefore, the system management modules at all
levels, ranging from rack-level management to the operating
system need to be enhanced with thermal-aware policies.

A complexity that arises in thermal management in
large-scale systems is the effect of physical properties (e.g.,
physical location, access to cooling, and the inherent vari-
ation among seemingly identical processors in response to
raised temperatures) on the thermal behavior. Our previous
work [3] demonstrated that two identical CPUs placed in
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different physical locations of the same system will exhibit
different thermal responses even though they are running
the same application. On a two-node system (Intel Xeon
Phi coprocessors) we observed a difference of over 20 ◦C
between two identical nodes running the same application.
In turn, this varying thermal response can cause these seem-
ingly identical subcomponents to perform non-uniformly,
contrary to the abstract assumption of the operating system
about these hardware components. As a result of such
temperature gradients different nodes are subject to varying
amounts of thermal throttling (e.g., DVFS, power capping).
In certain cases a particular node may be subject to throttling
consistently more often than another certain node. Such
imbalance widens the performance gap between different
system nodes. Our experiments revealed that throttling even
a single thread among 128–169 (the number depends on
the application) threads results in a 31.9% average system
performance degradation.

Previously, we presented a methodology for characteriz-
ing the thermal response across system nodes with the abil-
ity to capture inherent variations using the Gaussian process
method[3]. The resulting temperature prediction model for
compute nodes can be utilized by varying levels of the
system management modules to execute static thermal-
aware policies. In this work, we extend this framework
towards a wide variety of machine learning-based methods
and demonstrate improved accuracy as well as reduced
overhead in capturing the thermal response of compute
nodes in a system. The resulting predictors are highly suited
for dynamic/run-time management modules. Furthermore,
we achieved a deeper understanding of the large space of
system parameters that are used to develop the thermal
models and performed a systematic analysis of their relative
importance. In order to demonstrate the benefit of a thermal-
aware policy guided by the resulting thermal models, we
implemented a task placement method.

Specifically, we used two lightweight machine learning
methods:(i) artificial neural networks (ANN) and (ii) least
absolute shrinkage and selection operator (lasso) regression.
ANN’s have been used for time series forecasting since
1980s, with over 5,000 publications until 2007 [4]. ANN’s are
widely used because they are capable of handling noisy and
incomplete data. They are also able to deal with non-linear
systems, and once trained can predict at a high speed [5].
Lasso linear regression is another popular regression anal-
ysis method that is also capable of variable selection. This
helps enhance the prediction accuracy, reduce the overhead,
and improve the interpretability of the statistical model it
produces [6].

We demonstrate that we are able to reduce the error
in temperature prediction in the Gaussian process model
from 4.2 ◦C to 2.9 ◦C using the feature reduction methods.
Furthermore, the newly developed models using neural
network and lasso linear regression reduced errors to 2.9 ◦C,
3.8 ◦C respectively. We also show that using the new mod-
els we were able to reduce the overhead of prediction to
0.22 ms, 0.097 ms and 0.026 ms from 0.57 ms per prediction
for Gaussian process using reduced Gaussian process, neu-
ral network and lasso linear regression respectively.

We finally demonstrate the effectiveness of the new
models for task scheduling in our target system. Specifically,

we consider the placement of two random applications on
the two different cards. Our model predicts the thermal
response of the two possible allocations and then selects the
one that results in lower average temperature for the hottest
component in the system. We provide three versions of our
prediction mechanism. Our results show that our model is
capable of scheduling tasks with awareness of thermal im-
pact, identifying the thermally optimal schedule (under the
same performance) with a success rate of 75 %, 82.5 % and
74.17 % for reduced Gaussian process, Neural network and
Lasso linear regression respectively compared to 72.5 % in
our previous work. We show that these scheduling schemes
guided by our model can decrease the peak temperature
of the system by as much as 11.9 ◦C (4.4 ◦C on average). We
also extended our analysis to a 16-node system and we were
able to train models and execute them in real time to guide
task migration and achieve on average 17 % reduction in the
overall system cooling power.

The rest of this paper is organized as follows. Section 2
gives an overview of related work. In Section 3, we present
our motivational experiments. We present the Gaussian
process based thermal characterization methodology de-
veloped previously, our approach to optimize the model
using feature selection and the newly developed models in
Section 4. Section 5 presents our experimental results. We
discuss possible future directions in Section 6 and summa-
rize our main findings in Section 7.

2 RELATED WORK

Several prior studies have focused on guiding fine-grained
core-level dynamic voltage and frequency scaling schemes
with direct physical sensor feedback or with prediction
models [7, 8, 9, 10]. Other studies have focused on sys-
tem management tasks such as task migration and load
balancing [11, 8, 12, 13, 14, 15, 16, 17, 18]. Choi et al.
investigated thermal-aware temporal and spatial mitigation
schemes [11]. They conducted experiments on a POWER5
system, which allowed them to access the 24 on-chip ther-
mal sensors at every OS scheduler tick. They modified the
task scheduler in the Linux kernel to receive feedback from
physical sensors and demonstrated their hot-spot mitigation
technique. However, their scheme relies on direct feedback
from a large network of well-calibrated sensors, which
POWER5 provides, but not many other systems do.

Ramos and Bianchini [13] proposed a model that predicts
the thermal impact of a given thermal management policy.
Their model is based on heat transfer relationships and
therefore requires detailed knowledge of the underlying
hardware system and its thermomechanical properties.

Yang et al. [19] showed that application ordering on a
process causes a different thermal profile. They proposed a
heuristic technique to predict such a behavior and devel-
oped a kernel-level thermal-aware scheduler. Their model
is heuristics based, meant for reducing dynamic thermal
management within core hardware, and does not consider
HPC applications.

Piatek et al. [20] proposed a framework for thermal mod-
eling of HPC systems by considering the node arrangement,
power consumption, and cooling system configuration to
estimate the thermal parameters and develop a thermal
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model of the system. Their model is specific to system con-
figuration such as cooling system type, power consumption
metrics, and node type and requires considerable effort to
build. In contrast, in our approach we leverage the knowl-
edge available only to the node and do not require any
specific information about the system.

Moore et al. [21] proposed a framework to build a
thermal model for a datacenter using readings taken from
external temperature sensors, server instrumentation, and
computer room air conditioning units. Their framework
leverages a neural network–based method. Ultimately, this
model is used to provision a power budget across the
datacenter, and it does not have a notion of real application
workloads. Hence, the model has no learning component
for the workloads. The model is trained only to learn the
system, unlike our model, which is capable of inferring both
the system and the actual applications.

Chaudhary et al. [22] presented a survey of power saving
techniques for green datacenters. They also provided a de-
tailed survey of thermal-aware schedulers that use thermal
models for prediction and policy implementation.

Most previous works that developed prediction methods
do not target a true HPC system or HPC workloads. Those
that study thermal-aware management for HPC systems, on
the other hand, utilize only limited physical thermal sensor
feedback or require detailed knowledge of the thermome-
chanical properties of the system.

In our previous work [3], we developed a framework
that provides a novel application of the Gaussian process-
based machine learning method, solely leveraging the sys-
tem status accessible to the operating system, without re-
quiring physical or domain-specific information about the
system. This thermal characterization framework extends
beyond the level of processor cores and is capable of charac-
terizing higher-level system components, such as nodes. In
contrast, most related works focus solely on predicting and
mitigating within-core and across-core thermal variation.

For this framework two kinds of models were devel-
oped: (1) a decoupled model, using information only from
the node under observation during analysis; and (2) a
coupled model, using information from all the nodes in the
system in addition to the node under observation during
analysis. The coupled model is more comprehensive yet it
does not scale well in terms of adding new nodes.

In this paper, we extended this framework and the ther-
mal models with the following specific new contributions:
We identify the opportunities to improve the accuracy of the
decoupled models and enhance their suitability for dynamic
prediction by minimizing their overhead. Specifically, we
reduce the set features used to predict the state of the
system. We leveraged feature selection [23] and Hall et
al. [24] for this purpose. We also explored other machine
learning methods to extend the existing framework and
achieved new models with lower overhead.

3 MOTIVATION: THERMAL ANALYSIS OF A HPC
SYSTEM

Our work has been motivated by a detailed thermal analysis
of representative HPC systems. We have thermal analysis

data collected from three systems: (1) inlet coolant temper-
ature data across nodes in the Mira Blue Gene/Q super-
computer [25]; (2) a thermal map from a two-node system
based on the Intel Xeon Phi implemented as PCIe cards,
where each card contains one processor with 61 cores and
four hardware threads per core; and (3) core-level tempera-
ture data from a two-package Intel Sandy Bridge processor
configuration. The data from Mira was provided to us by
a third party [25]. We collected the data for the other two
systems ourselves, using microbenchmarks.

The variation in thermal behavior is significant in all
three cases. In the Intel Xeon Phi-based system, we observe
over 20 °C difference in temperature between the hottest
and coldest cards under the same workload. Furthermore,
the upper card is always consistently hotter than the lower
card. This specific system has also served as our testbed
for the remainder of our experiments in this study. In the
Sandy Bridge system, a clear variation in temperature occurs
among the eight cores within the same package as well as
between the two packages.

Thermal variation is present in different levels of the
system, not only among individual cores, but also across
nodes; and there are thermal hotspots that largely deviate
from the average behavior of the systems, causing imbal-
ance in performance, excessive power consumption, and
threats to reliability. The distribution of the hotspots and the
variation in peak temperature across different system com-
ponents can be attributed to two factors. First, it depends
on the physical attributes of the hardware components. For
example, presumably the reason for the upper card in the
Intel Xeon Phi-based system being hotter than the lower
card is that the upper card intakes hotter air. Second, the
distribution depends on the placement of the workloads.
To demonstrate how placement can affect hotspots, we per-
formed an experiment on our testbed. We ran every possible
pair of applications from a benchmark set on the two-node
system. We performed two runs for each pair, swapping the
placement of the applications between the top and bottom
card. We found that between two alternative mappings of a
pair of applications to the two cards, the difference between
the peak observed temperature in the system can be as high
as 11.9 ◦C. Clearly, some mappings incur significantly more
thermal stress than other mappings do.

These observations motivated us to design tools for
making thermal-aware decisions, mitigating the problem of
thermal variation and reducing the hotspots in the system.
In our previous work [3] we developed a new framework to
characterize the thermal behavior of a HPC geared toward
capturing thermal hotspots at system-level components. In
our present work we extend this framework to use more
machine learning models and fewer features in order to both
improve accuracy and reduce overhead, making it more
suitable for dynamic prediction.

4 MODEL FOR PREDICTING SYSTEM TEMPERA-
TURE

In this section, we first provide the background on the
framework developed in our previous work. We then de-
scribe the evaluation criteria used to select various pre-
diction models. Note that, we used standard libraries for
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providing us with optimized implementations of each of
the model types. For each model we applied a 10-fold cross-
validation. Next, we present the details of the optimizations
and prediction methods developed during this work. We
conclude the section with a discussion on the complexity
and overhead of the various methods.

4.1 The Thermal Characterization and Prediction
Framework

The baseline temperature prediction model for an HPC
system is designed to reflect the physical and architecture-
driven sources of variation. The methodology used to create
this model comprises five steps.

1) For a specific machine in the system (e.g., a par-
ticular node in the cluster), we run a series of
benchmarks on that machine and collect data on
their performance related characteristics (such as
cache misses, fraction of floating-point instructions).
These properties are largely correlated with the ap-
plication’s own nature. Hence, they are invariant as
long as the architectural configuration of the ma-
chine remains the same. The thermal responses of
these benchmarks on this machine are also collected
during these runs.

2) Using the cumulative data collected from all bench-
marks, we generate a machine-specific model that
maps representative application characteristics and
an initial physical state to a predicted temperature
expected to manifest on that machine after a certain
time interval.

3) Independently, for the same physical system, for
each actual target application of this HPC system,
we collect a time series set of samples of application-
dependent properties, which are stored in log files
by the system software.

4) When an application has to be scheduled on the
HPC system, we use the machine model from Step 2,
which is generic and was built without any informa-
tion directly from this particular target application.
We also use application characteristics of this spe-
cific target workload preprofiled in Step 3 to predict
the operating temperature.

5) Using the predicted operating temperatures, we
compare alternative task assignments. The system
software is provided with a suggestion for an as-
signment that is expected to result in lower average
temperature for the hottest node.

The framework is designed to be general so that it can
apply easily to a different architecture as well as at a dif-
ferent level of granularity (individual chip, node, rack, etc.).
The block diagram for the framework is given in Figure 1.
Ultimately the output of the model is the thermal response
of the system.

We outline the two main stages of the model develop-
ment: (i) collection of data from various sources as described
in Steps (1) and (3) above and (ii) construction of a thermal
model.

For a given system, a set of features at a time t comes
from various sources, including hardware performance

counters, temperature sensors, and kernel counters. Some
of these features represent application characteristics and
do not change significantly when running the application
on different nodes of the system. We call these features
application features, and we denote the values of these fea-
tures at time t as a vector A(t). The remaining features
represent a node’s physical condition. Even while running
the same application, these features can vary dramatically
across nodes depending on each node’s cooling conditions,
location, and so forth. For example, temperature sensor
readings are in this category. We call these features physical
features, and we denote them as a vector P (t). In Section 5,
we provide a full list of these features.

The framework uses a set of representative benchmark
applications to characterize a node and obtain a machine-
specific model for that node. In our present work we extract
representative features from the actual workload set of an
HPC system. Each target application is run on the node, and
its application features and physical features are collected.
We set the length of the profiling run to ensure that each
application reaches well beyond its sections of interest. At
the same time, this duration is set to be long enough for the
system to reach its thermal steady-state.

Based on how we use the features, we have two choices
for constructing the thermal prediction system:

1) Use the application and physical features from only
the target node. This model reflects a node’s thermal
response completely independent of any thermal
coupling with other nodes in the system. This is
referred to as a decoupled model.

2) Use the application and physical features from the
target node and the surrounding node. The activity
of nearby nodes can represent potential thermal
coupling that may be present in the system. This
is referred to as a coupled model.

Training for decoupled models and execution of decou-
pled prediction are highly scalable. Introducing coupling
information requires the collection of features from one
application or node while mapping another paired appli-
cation onto all nearby nodes in different combinations. This
process was discussed in [3], where we showed that the ac-
curacy of the model is minimally improved by considering
coupling between system nodes.

We leverage the collected features using a variety of
machine learning methods to generate the prediction model.
In Sections 4.2 we discuss the selection of these models for
our study, and in Sections 4.3, 4.6, and 4.5 we describe
the selected models. Basically, the model is embodied in the
form of a function fj generated for given node j, such that

Pj(i) = fj(A(i),A(i− 1),P (i− 1)). (1)

The resulting temperature prediction model is then used
as follows. At some point in time, the task scheduler consid-
ers assigning an application to a specific node in the system.
At that instant, our model is invoked. It receives the repre-
sentative preprofiled application features of this application
in the form of a series of samples (A(1),A(2), . . . ,A(N)).
It also receives from the system the state of the initial
physical features of the node. It then iterates through the
time series of the pre-profiled data and at each step makes



GULIANI et al.: IMPROVING MACHINE LEARNING MODELS FOR MINIMIZING THERMAL VARIATION ACROSS SYSTEM COMPONENTS 5

Fig. 1: Representative block diagram of the framework

a temperature prediction. In this way, the model generates
the expected thermal response over a period of time.

(a) Online prediction using our model

(b) Static prediction using our model

Fig. 2: (2a) Online temperature predictions of our model (blue solid line) versus
actual temperature sensor readings (red dotted line). (2b) Static temperature
predictions of our model (blue solid line) versus actual temperature sensor
readings (red dotted line).

The model can be used in an online fashion to predict
temperature from application characteristics sampled by
the system at run time. A thermal response generated by
the model used in online mode is depicted in Figure 2a.
In this figure the thermal response derived from actual
temperature sensors on a node (dotted line) is plotted along
with the predicted response generated by the model (solid
line). We can see that the model has high accuracy (less
than 1°C difference on average) when used online. The
model can also be used statically to assess thermal peaks
in steady state that would result from a given task assign-

ment. Static prediction is what we have focused on in this
work in order to aid static task assignment decisions. Here,
the prediction is not intended to calculate a spontaneous
thermal response with absolute accuracy; rather, it should
be able to predict steady-state behavior as accurately as
possible. Also the prediction mechanism should be capable
of capturing significant fluctuations in the thermal response
over time. The output of the model developed previously,
used statically, is illustrated in Figure 2b. As one can see,
the model successfully captures long-term fluctuations and
the steady-state behavior of the thermal response.

The effectiveness of such a universal model in aiding
a static task scheduler was evaluated previously. Dynamic
scheduling, aided by the model, would be feasible as far
as the accuracy of the temperature prediction goes. In our
present work we improve the suitability of the prediction
methods by improving accuracy and reducing prediction
overhead as discussed in Section 4.4 and Section 4.7. How-
ever, the effectiveness of the resulting dynamic scheduling,
including migration overheads and the like, requires further
careful study. We plan to investigate this avenue in our
future work.

4.2 Evaluation of Alternative Machine Learning Ap-
proaches

The effectiveness of the framework for prediction depends
on the ability of the function f , described in Equation (1),
to capture the thermal characteristics of the system. Note
that there are no assumptions of any detailed knowledge
about the underlying system. For instance, the framework
is unaware of placement of nodes (e.g., which card is far
from and which card is near the cooler air flow) and the
geometry of the system. Also, the framework does not make
use of any domain-specific knowledge pertaining to thermal
modeling. In other words, the framework has no knowledge
of the thermal transfer properties of the materials involved.
It operates as a simple mapping function between features
that are accessible to an operating system and the expected
temperature at a node. This approach makes machine learn-
ing methods a natural candidate for our purposes. We
evaluated a large number of machine learning methods, and
we used WEKA [26] to explore various regression methods.
From these, we selected three methods and performed a
more in-depth evaluation of each.
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The main evaluation criterion was how well each
method can predict the temperature for a given state of
application features dt seconds into the future. Figure 3
presents our evaluation of several methods in terms of
mean absolute error in prediction versus the length of the
prediction window. We tested these methods to predict as
far as 25 seconds into the future. From Figure 3 we observe
that for all models the prediction errors tend to grow as the
prediction window extends farther into the future. In addi-
tion, we observe that some of the techniques, such as neural
networks and Bayesian networks, experience instabilities.
Linear regression models exhibit acceptable performance,
particularly for shorter prediction windows. Overall, the
Gaussian process, among all the methods, has the best pre-
diction accuracy until the prediction time window reaches
25 seconds.

Fig. 3: Performance of different machine learning methods when predicting future
temperatures.

Fig. 4: Performance of different machine learning methods using optimized
models for predicting future temperatures.

We also took a closer look at three models: linear re-
gression, Gaussian process regression, and a neural network
method called multilayer perceptron (MLP). In this analysis
we developed optimized models for them and then com-
pared the results. To have deeper insight into the methods,
we predicted one time step into the future at a time and

used this predicted value as part of the input for the next
prediction until reaching dt seconds into the future for a
given set of applications. This strategy is more realistic
for assessing the suitability of the methods for a dynamic
prediction scheme. Figure 4 presents our evaluation of these
three methods in terms of mean absolute error in prediction
versus the length of the prediction window. We observe a
similar growth in the errors with an increase in the time
window. We also observe that the neural network model is
stable in this experiment compared with previous results.
Moreover, the performance in terms of errors for the three
methods at the 20-second mark is comparable. The Gaussian
process method is still the best-performing model when the
prediction reaches 30 seconds, but MLP is a close second.

Based on this analysis we decided to optimize the Gaus-
sian process model by reducing the feature set. The method
used for feature selection for the reduced Gaussian process
is discussed in Section 4.4. Further, we decided to imple-
ment a linear regression and MLP model and study their
suitability in terms of prediction error and overhead. The
models are discussed in Sections 4.5 and 4.6, respectively.
The overhead analysis for all the methods is detailed in
Section 4.7. The suitability in terms of prediction errors is
detailed and the results are presented in Section 5.

4.3 Prediction Model Using The Gaussian Process
Method
A Gaussian process [27] is a stochastic process of a set of
random variables (X1, X2, . . .), where any subset of these
variables constitutes a joint Gaussian distribution.

We assume that any subset of elements of
the physical attribute vectors in our problem
(P (i1),P (i2), . . . ,P (in),P (in+1)) similarly has a joint
Gaussian distribution:

(P (i1),P (i2), . . . ,P (in),P (in+1)) ∼ N (0,K), (2)

where K ∈ R(n+1)×(n+1) is the covariance matrix. The
selection of 0 as the mean of the Gaussian distribution is
a common choice. The elements of this matrix are computed
by a kernel function k:

K(j,k) = k(X(ij),X(ik)),

X(ij) = (A(ij),A(ij − 1),P (ij − 1)),

X(ik) = (A(ik),A(ik − 1),P (ik − 1)).

(3)

The kernel function essentially evaluates the
correlation between two samples X(ij) and
X(ik) and populates the covariance matrix. For
a set of observations P (i1),P (i2), . . . ,P (in) and
X(i1),X(i2), . . . ,X(in),X(in+1), the model then
generates the expected value of P (in+1) (i.e., the prediction)
as follows:

E(P (n+ 1)|X,P,XN+1) = K(Xin+1 , X)K(X,X)−1P,

where, P = (P (i1);P (i2); . . . ;P (in)),

X = (X(i1);X(i2); . . . ;X(in)).
(4)

Note that K(X,X)−1P can be precomputed and reused
each time a prediction is made. Hence, the matrix inversion
step of this precomputation occurs only once.
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Essentially, X and P constitute the training set for our
model, since they are the observations that are used to
estimate P (in+1). Hence, the temperature prediction model
f that we aimed at can be expressed as follows.

f = E(P (in+1)|X,P, (A(in+1),A(in+1 − 1),P (in+1 − 1)))
(5)

4.4 Feature Selection

The feature selection method used is based on the correla-
tion feature selection (CFS) algorithm [28]. In our work we
used the CfsSubsetEval method provided by WEKA data
mining software [26] for preliminary analysis. A detailed
analysis of the dataset then was done by using correlation
analysis and hierarchical clustering methods, provided by
Rattle [29], to identify relationships among the features
and to validate the relevance of the selected features. We
iteratively tested the regression model with the selected
features obtained above and used selectKbest search, pro-
vided by the Scikit-Learn Python package [30], to arrive
at 16 features. This reduced feature set provided us with
improved accuracy and reduced overhead compared with
using all the features while performing the prediction.

In this work we used a linear regression–based model as
the regressor for the selectKbest method. With this model
we repeatedly use cross-validated regression weights to
identify the K best features that are used repeatedly by
the model. The good performance of the linear regression
model during model selection in Section 4.2 on our dataset
indicated that this technique is a good fit for our case. The
results for this feature selection are discussed in Section 5.

We also tested principal component analysis [31] as a
possible feature reduction method. This technique is widely
used; it transforms the given input feature set into a reduced
set of principal components that are then fed into the learn-
ing model. The algorithm requires this transformation as the
first preprocessing step before the machine learning model.
Since we are targeting an HPC environment, this added
preprocessing set would have increased the total overhead
for the model. Hence we chose a simpler method.

4.5 Prediction Model Using Lasso Linear Regression

Least absolute shrinkage and selection operator (Lasso)
is a regression analysis method that performs both vari-
able selection and regularization in order to enhance the
prediction accuracy and interpretability of the statistical
model it produces. Introduced by Tibshirani in 1996 [6],
it is an extension of least-squares optimization with L1-
norm regularization; in other words, the method penalizes
the feature weights if the feature introduces errors for the
training set. This method is well suited to our case because it
does an additional step of feature selection during training,
producing more accurate results than with simple linear
regression. Once this model is trained, it has the lowest
overhead for prediction because the output is equal to the
sum of the weighted inputs [32] [33]. For our analysis we
use the implementation provided by the Python package
Scikit-Learn [30]

4.6 Prediction Model Using Multilayer Perceptron

The artificial neural network (ANN) is an information-
processing paradigm inspired by the way biological nervous
systems, such as the brain, process information. It com-
prises a large number of highly interconnected processing
elements (neurons) working in unison to solve specific
problems. These elements can be physical devices, computer
programs, or pure mathematical constructs. ANN is widely
accepted as a machine learning method offering an alterna-
tive way to tackle complex and ill-defined problems. ANNs
learn from examples; they are fault tolerant, since they can
handle noisy and incomplete data; they are able to deal with
nonlinear problems; and, once trained, they can perform
prediction and generalization at high speed [5]. ANNs have
been widely used for time series forecasting since the 1980s.
As indicated by Crone and Nikolopoulos [4], by 2007,
there have been more than 5,000 publications on ANNs for
forecasting. The well-known ANN predictors can be listed
as multilayer perceptron (MLP), recurrent neural networks
(RNN), and radial basis function networks (RBFN). To train
these models, that is, to find the suitable parameters for
them, gradient descent methods are often used.

In our case we use MLP. It is a feed-forward artificial
neural network model that maps sets of input data onto
a set of appropriate outputs. An MLP consists of multiple
layers of nodes in a directed graph, with each layer fully
connected to the next one. Except for the input nodes, each
node is a neuron (or processing element) with a nonlinear
activation function [34].

In our study we use the Pybrain neural network li-
brary [35] for python to develop the MLP predictor. De-
signing an ANN typically requires the following five basic
steps:

1) Collecting data: ANNs are as good as the data that
is used to train them. Hence, collection of good-
quality data and a significant amount of data is
of paramount importance for building a successful
ANN model. The data collection for our model is
explained in Section 4.

2) Preprocessing data: In this step the input data col-
lected is normalized to range from −1 to 1. Accord-
ing to the literature, normalization of the dataset
improves the training efficiency [36] and reduces
errors in the output activation function.

3) Building the network: An ANN is built by spec-
ifying the number of hidden layers, neurons in
each layer, transfer function in each layer, training
function, weight/bias learning function, and perfor-
mance parameter to be checked during training. For
our model we use an MLP network with one input
layer, two hidden layers, and one output layer. The
output activation function used is Sigmoid. These
choices allow for identifying regions in the data
with arbitrary complexity [5]. The parameters defin-
ing the configurations of the layers were determined
empirically. Using at least twice as many neurons as
there are inputs in the first layer provided a good
approximation to extrapolate the information for the
given number of inputs. In the second hidden layer,
we now compress the information to one-fourth of
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the number of neurons in the first hidden layer
leading to the model output layer.

4) Training the network: During the training process,
weights are adjusted in order to make actual outputs
close to the target outputs of the network. MLP
utilizes a supervised learning technique called back
propagation for training the network. [36]

5) Testing the performance: For this step we use leave-
one-out cross-validation and testing mechanism,
where we keep all the data for one benchmark
application out of the training set and use it to test
the performance of the model. To eliminate bias, we
do this iteratively for all benchmarks.

4.7 Complexity Analysis and Runtime Overhead

The complexity and runtime overhead analysis for the three
algorithms is presented in the following subsections.

4.7.1 Analysis of the Gaussian Process
The main contributor to the computational complexity of a
Gaussian process is the matrix inversion at the precomput-
ing phase. This inversion operation has a time complexity
of O(N3) and is executed only once. Each subsequent
evaluation of f has a time complexity of O(MN), where
N is the total number of samples in the training set and M
is the number of features of each sample.

To reduce the training and prediction time, we use
a variant of the Gaussian process called the subset data
Gaussian process. For a large data set, we randomly select
Nmax samples from the data set, thus limiting N = Nmax.

Before attaching this model to the system, the model is
precomputed offline. Hence, it needs only to simulate the
system status. This simulation involves two steps:

• Gathering the current system state P (1). This step
requires I/O queries to all the feature sources. We
use 30 different sources, which incur a total commu-
nication cost of 22 ms.

• Simulating the system for a given time duration. We
simulate the system for five minutes. On average,
this costs 0.57 ms per prediction and 344.1 ms per
application (performing a total of 600 predictions).

To further reduce the training and prediction time, we
used feature selection algorithms to select the 15 features,
using which we get similar results from the Gaussian
process model while reducing the simulation time. The
simulation using the reduced Gaussian process on average
costs 0.22 ms per prediction and 132.94 ms per application
(performing a total of 600 predictions).

4.7.2 Analysis for Multilayer Perceptron
In our search for a low-overhead model we also looked at
multilayer perceptron. The time complexity of MLP trained
for regression (the forward propagation) can be calculated
by evaluating the time complexity of its two major compo-
nents:

• The number of multiplications needed to compute
the activation of all neurons: This is a vector prod-
uct, and in the ith layer of the network it equals

N(i) ∗N(i− 1), where N is the number of nodes in
layer. Our network consists of four layers. Assuming
the network has n neurons in all, the output layer
contains only one neuron for the output of the re-
gression. The remaining n − 1 neurons need to be
distributed among the remaining three layers. We
can assume for simplicity that in the worst case the
nodes are equally distributed, which would result
in ((n − 1)/3)3 multiplications, making the time
complexity of this operation equal to O(n3).

• The output activation function of neurons. In general
these are simple functions; hence one can assume the
time costs to be constant per neuron. This assump-
tion implies that given a network with n neurons,
the time complexity of this step would be O(n).

The overall complexity would be dominated by the multi-
plications resulting in an overall complexity of O(n3). Since
we know that the number of neurons for a given problem
is fixed, and hence n is constant, the overall complexity is
reduced from O(n3) to O(1).

The simulation time using MLP, on average, is 0.097 ms
per prediction and 58.23 ms per application (performing a
total of 600 predictions).

4.7.3 Analysis of the Lasso linear regression
Lasso linear regression is a least-squares method. Hence,
the overall complexity of a trained model would be domi-
nated by the multiplications of features with their respective
weights, namely, O(MN), where M is the number of fea-
tures and N is the number of input data points.

The simulation time using the Lasso linear regression,
on average, is 0.026 ms per prediction and 15.37 ms per
application (performing a total of 600 predictions).

5 EXPERIMENTAL RESULTS

The test environment used for this study is an Intel work-
station with two Intel Xeon Phi coprocessors. The Intel Xeon
Phi coprocessor is a promising platform featuring up to
61 cores and 244 hardware threads per chip. The theoret-
ical peak performance of a 61-core Phi coprocessor is 1.2
Teraflops in double-precision calculations. Each coprocessor
runs its independent operating system and communicates
with the host system through the PCIe interface. The sys-
tem management controller in the coprocessor monitors a
variety of on-board sensors. Our experiment system consists
of two nodes (cards): the bottom card denoted as “mic0”
and the top card as “mic1.” The configuration of the Phi
coprocessor is described in Table 1.

Table 2 shows the full list of benchmarks and their con-
figurations that were used to construct our thermal model.
We collected all available system features using a kernel
module was previously developed in [3] The kernel module
performs the sampling at a fixed interval. Its sampling has
a runtime overhead of 20 ms; to balance this cost, we there-
fore selected a sampling period of 500 ms. For cumulative
features such as instruction count, the module records the
increase since the last interval. For instantaneous features,
the module records the reading of the attribute. Table 3
lists the features collected and their classification. The die
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Coprocessor Configuration
Model # 7120X

# of cores 61
Frequency 1238 MHz

Last Level Cache Size 30.5 MB
Memory Size 15872 MB

Host Configuration
CPU E5-2609 v2

Frequency 2.5GHz
# of Cores 4

Last Level Cache 10MB
Memory 32GB

TABLE 1: Intel Xeon Phi coprocessor and host configurations.

App. Data
Size, Pa-
rameter

Description

from the CESAR benchmark
XSBench default compute cross sections using the

continuous energy format
RSBench default compute cross sections using the

multipole representation format
from the NAS parallel benchmark
BT C block tridiagonal solver
CG C conjugate gradient, irregular

memory access and
communication

EP C embarrassingly parallel
FT B discrete 3D fast Fourier trans-

form
IS C integer sort, random memory

access
LU C lower-upper Gauss-Seidel solver
MG B multigrid on a sequence of

meshes
SP C scalar pentadiagonal solver
from the scalable heterogeneous computing benchmark
FFT -s 4 fast Fourier transform
GEMM -s 4 general matrix multiplication
MD -s 4 performance test for a simplified

molecular dynamics kernel
miscellaneous applications
BOPM default binomial options pricing model
HogbomClean default Hogbom clean deconvolution
DGEMM default double-precision general matrix

multiplication by Intel

TABLE 2: Applications used for our experiments.

temperature feature is the one that the framework ultimately
predicts.

Because the framework includes temperature sensors, it
can be trained to predict the processor temperature as well
as the ambient temperature, which also plays an important
role in thermal models [37].

We ran each application for five minutes. If the ap-
plication finished in under five minutes, it was restarted.
If the application ran longer than five minutes, it was
terminated. We thus ensure that all applications used for
profiling perform a major portion of their main body of
computation within this duration. Specifically, for the given
hardware configuration, five minutes is sufficient time for
all the applications to run through their setup phase and
reach the steady-state behavior and temperature.

5.1 Feature Selection

We analyzed the collected data for correlations and used
the correlation matrix to build a hierarchical cluster of the
above mentioned features. The output dendogram of the
hierarchical clustering is presented in Figure 5.

The feature selection process resulted in the following
16 parameters: volt, cyc, inst, instv, fp, fpv, fpa, l1dr, l1dw,

Name Description
App. Features

freq Frequency
cyc # of Cycles
inst # of Instructions

instv # of Instructions in V-Pipe
fp # of Floating-Point Instructions

fpv # of floating point instructions in V-pipe
fpa # of VPU elements active
brm # of branch misses
l1dr # of L1 data reads
l1dw # of L1 data writes
l1dm # of L1 data misses
l1im # of L1 instruction misses
l2rm # of L2 read misses
mcyc # of cycles microcode is executing

fes # of cycles that front end stalls
fps # of cycles that VPU stalls

Physical Features
die max die temperature from on-die sensors
tfin fan inlet temperature

tvccp VCCP VR temperature
tgddr GDDR temperature
tvddq VDDQ VR temperature
tvddg Uncore power
tfout fan outlet temperature

avgpwr average power
pciepwr PCIe input power reading
c2x3pwr 2x3 input power reading
c2x4pwr 2x4 input power reading
vccppwr core power
vddgpwr uncore power
vddqpwr memory power

TABLE 3: List of features collected from the system.

Fig. 5: Dendogram representing the various clusters present among the given
features. The x-axis represensts the Euclidean distance between the clusters
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l1dm, l1im, l2rm, brm, fes, and fps. Here we observe that
most of the features chosen are application features. The
only physical features we consider are the die temperature
(also the target) and the voltage drawn by the system.
Iteratively we found that this combination provides a rea-
sonable steady-state response for the Gaussian process that
is approximately three times faster and nearly as accurate
as the previously proposed Gaussian process where all the
parameters are used.

In a similar manner we found that the MLP model re-
quires only six parameters to achieve a model, which is ap-
proximately five times faster than the previously proposed
Gaussian process and nearly as accurate. These parameters
are fp, fpv, l1dm, l1dr, inst, instv, and tdie. Also note that
both these models look back two time steps into the die
temperature history.

5.2 Predicting Application Temperature

For predicting the thermal response of a system we first
need to train the prediction model. To this end, we randomly
select a subset of 500 samples from all the available samples.
of the model We limit the total number of samples used
for training in order to limit the computation costs and to
reduce both the time and space complexity of the model as
described in Section 4.7. The number Nmax = 550 is selected
because it provides a good tradeoff between prediction
accuracy and model complexity. We highlight that in all our
experiments, the model is trained using samples from all applica-
tions except the target application; in other words, the training
model never includes samples from the application(s) used
in testing. This method is also referred to as leave-one-out
cross-validation.

We use symbols Ai,X,Y (j) and P i,X,Y (j) respectively
to denote the application and physical features of the jth
sample we collected on mici, when running application X
on mic0 and Y on mic1. Note that when we use A as the
application profile, we pick only Ai,X,NONE , as when we
do the profiling, and do not run any applications on the
other node. The selection of i depends on the node our
model is trained for.

For each application X, we train the model for mic0 using
samples from all applications except X. Then we test the
model by performing temperature prediction for application
X, using X’s preprofiled application features collected on
mic1. Figure 6 shows the prediction output compared with
the actual output for the models.

We report the individual peak temperature error and av-
erage temperature errors of our models in Figure 7, Figure 8,
and Figure 9. The error of our model is computed by taking
the difference between our model’s prediction for a time
instant and the thermal sensor reading collected from that
node for the same instant.

We highlight key properties of this experiment setup:

• When predicting for application X, no information
of application X is used during the training of the
model.

• After training, while we are predicting the temper-
ature for X running on mic0, we actually use the
application features of X collected on mic1, in order

(a) Static prediction using reduced Gaussian process model

(b) Static prediction using MLP model

(c) Static prediction using Lasso linear regression model

Fig. 6: ( (6a)(6b)(6c) Static temperature predictions of our models (blue solid line)
versus actual temperature sensor readings (red dotted line).

to validate our assumption that application features
remain the same across different nodes.

• For each application, the features are collected only
once statically. These logs are repeatedly used for
predicting temperature in different machines.

We observe that our model can predict the temperature
accurately for most of the applications. Compared with the
previously proposed Gaussian process model, the average
error in the reduced feature set Gaussian process model de-
creases from 4.2°C to 2.9°C. For the MLP model the average
error decreases to 2.9°C, and for the Lasso regression model
the average error decreases to 3.8°C. We believe that we
can further improve the prediction accuracy of our model
by incorporating more applications during training to cover
extreme cases. As we will see in the following section, for
task placement problems, some bias error can be canceled
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Fig. 7: Temperature prediction error of the decoupled method for Gaussian
process with the reduced feature set.

Fig. 8: Temperature prediction error of the decoupled method for MLP.

out and lead to correct scheduling decision.

5.3 Comparison with Linear Regression Methods

We also compared our temperature prediction model with a
linear model, a common approach of temperature prediction
in literature [20, 21]. We implemented a recently proposed
model using linear regression [20] to compare with our
methods.

This linear model has the form:

Tcpu(t+∆t) = T∞cpu(t+∆t)+(Tcpu(t)−T∞cpu(t+∆t))e−
∆t

R(t+∆t)C ,

with T∞cpu(t) = Pcpu(t)R(t) + Tamb(t), R(t) = Rcond +
1

knV (t)n and V (t) = 3
√
kpPfan(t). C , Rcond, kn and kp

are constants to be estimated. The model assumes a fixed
cooling condition, making Pfan(t) constant. Therefore, R(t)
is a constant and can be denoted as R. Hence, the model can
be re-expressed as:

Tcpu(t+ ∆t) = (1− e− ∆t
RC )RPcpu(t+ ∆t)

+ e−
∆t
RC Tcpu(t) + (1− e− ∆t

RC )Tamb(t+ ∆t). (i)

Tamb(t) is also expressed as a linear combination of the
CPU and the inlet temperatures as prescribed by Piatek et
al’s linear modeling proposal:

Tamb(t) = λ1Tcpu(t) + λ2Tin(t), (ii)

where λ1, λ2 > 0. We substitute (ii) into (i), making λ1 and
λ2 additional parameters to be estimated. Note that if we
use Tamb(t + ∆t) in (i), we will have a Tin(t + ∆t) term,
meaning that we need to also predict the inlet temperature.
However, there was no method to predict inlet temperature
described in [20]. Given our observation that inlet temper-
ature has a slow rate of change with the run time of each

Fig. 9: Temperature prediction error of the decoupled method for Lasso linear
regression.

application, we use Tin(t) to replace Tin(t + ∆t). We still
need Tin as a variable in the model, because it may be
different across longer time windows. Therefore, we have:

Tcpu(t+ ∆t) =

(1− e− ∆t
RC )RPcpu(t+ ∆t) + e−

∆t
RC Tcpu(t) + (1− e− ∆t

RC )λ2Tin(t)

1− λ1(1− e− ∆t
RC )

.

(iii)

The essential coefficients are, Pcpu(t + ∆t), Tcpu(t), and
Tin(t). Given that ∆t is fixed for Piatek et al.’s model, the
coefficient space covered by (iii) is equivalent to

Tcpu(t+∆t) = β1Tcpu(t)+β2Pcpu(t+∆t)+β3Tin(t), (iv)

where β1, β2 and β3 have the same sign. If we assume that
0 < λ1 < 1, then the constraint can be further tightened to
β1, β2, and β3 being positive.

As the purpose of adding constraints usually is to pre-
vent over-fitting, we also test a more general model with
intercept added and relaxing the constraints in (iv):

Tcpu(t+ ∆t) = β0 +β1Tcpu(t) + β2Pcpu(t+ ∆t) +β3Tin(t),
(v)

which is the model used for our comparison. We tested both
models specified by (v) without constraints and (iv) with
constraints, and have the following observations:

• (v) without constraints has better prediction accuracy
over (iv) with constraints.

• β1, β2, and β3 estimated in (v) without constraints
are positive, automatically satisfying the constraints
proposed in [20]. It means the regression in (v) aligns
with the intuition from thermal model derived in
[20].

Therefore, our comparison is presented using (v).
We used the same setup that was used in the previous

sections for our methods. We compared the temperature
prediction results of the methods in two scenarios: 1) online
prediction, where we apply the method once to get the tem-
perature prediction for one second later in time, 2) and static
prediction, where we apply the method iteratively to obtain
the temperature prediction into a far horizon, specifically
into a time frame of five minutes. We show the results in
Table 4. Each cell in the table shows the mean absolute
error of the respective model (column) when applied to a
particular application (row) in °C. We observe that the linear
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Linear Regression Gaussian Process MLP
Online Static Online Static Online Static

BT 0.63 18.85 2.10 7.12 0.85 2.99
CG 0.54 15.05 0.61 2.05 0.59 2.66
EP 0.65 17.62 1.58 1.38 0.74 4.07
FT 0.51 15.94 1.05 4.64 0.64 2.15
LU 0.52 18.17 0.56 0.89 4.54 4.54
MG 0.56 15.88 0.72 2.63 0.62 2.92
SP 0.54 15.07 0.53 0.94 0.95 5.36
UA 0.58 15.58 0.86 2.19 0.75 1.46

mean 0.57 16.52 1.00 2.73 1.21 3.27

TABLE 4: Temperature prediction results of different methods.

method has accurate predictions when predicting tempera-
ture only for one short step forward. While this model has
been reported to provide good performance when applied
iteratively in simulated environments only (Fig 4 in [20]),
it exhibits larger discrepancies to actual temperature when
used for static predictions in a real system. The error is over
15 °C, meaning it does not have the capability in predicting
temperature in the real system scenarios we aim to tackle.
Our methods, both GP and MLP, have on par performance
as Linear Regression in the short horizon of one second,
single step setup. Furthermore, when prediction into a
longer horizon is needed, our methods can still provide
good prediction of the temperature in a time frame in the
order of minutes.

When applying the method iteratively, the predicted
temperature given by the linear model will converge to the
predicted stable temperature Tcpu(∞), if the application is
running at a stable state:

Tcpu(∞) = β0 + β1Tcpu(∞) + β2Pcpu(∞) + β3Tfin(∞)

And,

Tcpu(∞) =
β0 + β2Pcpu(∞) + β3Tfin(∞)

1− β1
We can observe the following two factors that cause the
linear model to exhibit low performance in real world sce-
narios: 1) As the step size is small, the temperature does not
have large change from one step to the next step. Therefore,
the proposed linear model will regress β1 close to 1. In our
experiments, β1 is fitted to 0.95. In the experiments in [20],
β1 is 0.98. Thus, the estimation of the temperature contri-
bution of CPU power and inlet temperature must be very
accurate to have a good prediction of stable temperatures.
2) In real world scenarios, temperature has other sources
of influence. Thus, the simple linear relationship might not
represent an accurate approximation to the true model. In
addition, the sensor reading errors (granularity, delay, etc.)
will also induce larger errors on the coefficient estimations.

5.4 Application Placement Guided by Temperature Pre-
diction

We test our model in a job assignment scenario: Given two
applications X and Y, determine which placement results
in lower peak temperatures, (X → mic0, Y → mic1), or (Y
→ mic0, X → mic1). Since the two cards have the same
architectural configuration, the applications will have the
same performance on them. However, different placement
can result in different thermal properties because of the

asymmetric physical placement of the two cards. Our goal
is to minimize the average temperature of the hotter card.

X0, X1 = arg min
X0=X,X1=Y

orX0=Y,X1=X

max{mean(P
(temp)
0,X0,X1

),

mean(P
(temp)
1,X0,X1

)}
(6)

In practice, however, we cannot get P before we actually run
the application. We use the prediction P̂ as P in Equation 6.
We let

T̂XY = max{mean(P̂
(temp)

0,X,Y ),mean(P̂
(temp)

1,X,Y )},

T̂Y X = max{mean(P̂
(temp)

0,Y,X ),mean(P̂
(temp)

1,Y,X )},

TXY = max{mean(P
(temp)
0,X,Y ),mean(P

(temp)
1,X,Y )},

TY X = max{mean(P
(temp)
0,Y,X ),mean(P

(temp)
1,Y,X )}.

If T̂XY −T̂Y X and TXY −TY X have the same sign, the model
makes a prediction that can reduce the maximum average
temperature of a specific application pair.

The runtime overhead of our sampling method is neg-
ligible because each prediction requires only one-time sam-
pling of the initial value of the physical features.

For the placement that assigns X to mic0 and Y to
mic1, we use the model f0, which was trained without any
knowledge of X to predict the temperature when running
X on mic0, and we use the model f1, which was trained
without any knowledge of Y to predict the temperature
when running Y on mic1. More specifically:

P 0,X0,X1
' P̂ 0,X0,NONE

P 1,X0,X1
' P̂ 1,NONE,X1

.
(7)

In Figure 10, Figure 11, and Figure 12, respectively, we
plot T̂XY − T̂Y X versus TXY − TY X for the decoupled
method using the reduced Gaussian process model, MLP
model, and Lasso linear regression model. Note that for
some cases presented some points are completely over-
lapping, giving the visual perception of there being fewer
points. Nevertheless, there are an equal number of points in
each case.

From Figure 10, Figure 11, and Figure 12 we can see that
T̂XY − T̂Y X has a positive correlation with TXY − TY X .
Furthermore, for the Gaussian process–based prediction
developed previously we found that 72.5 % of points fell
into the first and third quadrants, which means our model
made a correct decision and, hence, in 72.5 % of the cases
identified the better placement among the two possible
options. We define this as the success rate of our model.
The decision of our model resulted in 2.1 ◦C lower average
temperature than the opposite placement on average. How-
ever, among the pairs with better scheduling opportunities,
namely, |TXY − TY X | ≥ 3, our model had a 86.67 % success
rate.

Figure 10 shows prediction results for the reduced Gaus-
sian process model. We found that 75 % of the points fall
into the first and third quadrants; hence, in 75 % of the
cases it identified the better placement among the two
possible options. The decision of our model results in 4.3 ◦C
lower average temperature than the opposite placement on
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Fig. 10: Correlation between the actual and predicted thermal variation while us-
ing the decoupled method using reduced feature set Gaussian process prediction
model.

average. For the case |TXY − TY X | ≥ 3, our model has a
92.9 % success rate. For the MLP-based prediction shown in
Figure 11, we found that 82.5 % of the points fall into the
first and third quadrants; hence, in 82.5 % of the cases iden-
tified the better placement among the two possible options.
The decision of our model results in 4.4 % lower average
temperature than the opposite placement on average. If we
look only at |TXY − TY X | ≥ 3, then our model has a 97 %
success rate. For the Lasso linear regression based prediction
shown in Figure 12, we found that 74.17 % of points fall
into the first and third quadrants; hence, in 74.17 % of
the cases it identified the better placement among the two
possible options. The decision of our model results in 4.3 ◦C
lower average temperature than the opposite placement on
average. If we look only at |TXY − TY X | ≥ 3, then our
model has a 94.83 % success rate.

Furthermore, if we look at all the pairs where our models
make the wrong prediction, the average of |TXY − TY X | is
as low as 1.6 ◦C. Hence, these are task placements where
either configuration would be equally efficient.

In summary, all the methods identify the best case when
the temperature gains are maximum, and all choose the bet-
ter placement scheme yielding an average of 11.9 ◦C lower
average temperature than the opposite placement scheme.
In addition, we evaluated the optimal solution that could
be obtained from an oracle scheduler. The optimal task
schedules would result in 2.9 ◦C lower average temperature
than the opposite placement on average.

5.5 Scalability

We have also extended our methodology to a 16-node
Haswell architecture cluster. We have preliminary results for
a prediction module and its uses for task placement on this
larger system. This new set of experiments focused on how
a prediction scheme could lead to better energy efficiency

Fig. 11: Correlation between the actual and predicted thermal variation while
using the decoupled method using MLP Prediction model.

Fig. 12: Correlation between the actual and predicted thermal variation while
using the decoupled method using the Lasso linear regression prediction model.

and, particularly, help reduce the cooling energy spent by
the cooling fans.

These experiments showed that certain task assignments
have better energy efficiency than others and lead to ex-
ecution at equivalent performance with reduced cooling
requirements. Our machine learning approach in this case
has been tuned to correlate task assignment with power
consumption and cooling effort. For a 16-node system, we
were able to train models and execute them in real time to
guide task migration and achieve on average 17 % reduction
in the cooling power.

Implementing our prediction algorithm at a larger scale
has two sources of overheads. First, unlike the two-node
Xeon Phi Co-processor system, dynamic migration on this
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larger system takes significantly less time due to better
single-core performance and smaller number of total cores.
The time to perform cross-node migration is only around
one minute. Considering the long running time of HPC
applications, this overhead is manageable. Second, while
doing one prediction over a specific task assignment scheme
can be quick, the overhead adds up when we need to
predict many different schemes to make one decision. We
apply two simple techniques to reduce this overhead. The
first technique is only randomly predicting 2 % of the total
number of assignment schemes. This percentage is based on
our observation that the best 1 % across all schemes already
provide good power reduction. The second technique is
to cache the prediction results. For different assignment
schemes, it is possible to make predictions on same sit-
uations. For instance consider the scenario of application
A running on node1-CPU1 and application B running on
node1-CPU2. This prediction can be needed (and hence be
reused) multiple times on any workload containing both
application A and B. Thus caching them can save a lot of
redundant computations.

6 FUTURE WORK

The accuracy of the prediction methods can be improved
further. One item we are planning to improve is the guided
selection of subset data for the training set. Currently we
do a random selection. However, we can select the samples
according to their representativeness, making the dataset
cover more cases so that it can predict better.

The next major step is to apply the same method to other
architectures, or a higher level, such as rack level. This is
where our method’s strength will shine: it is designed to be
easily applied to other architectures with little knowledge
and effort to build the model.

7 CONCLUSIONS

In this paper, we presented a novel framework to character-
ize thermal behavior of a HPC system. We have evaluated
various prediction models empirically and selected Gaus-
sian process as the base of our model. Our system predicts
the average operating temperature of different applications
to be scheduled on different parts of the system and selects
the application mapping that reduces the maximum average
temperature. We have discussed two models: the decoupled
method and the coupled method. The decoupled method
uses information on only the target platform, while the
coupled method also considers information on the neigh-
boring components. We also developed a reduced feature
set Gaussian process and MLP based decoupled models.
We demonstrate the methods developed we were able to
reduce the error in prediction in Gaussian process model
from 4.2 ◦C to 2.9 ◦C using the feature reduction. Further the
newly developed models using neural network and lasso
linear regression reduced errors to 2.9 ◦C, 3.8 ◦C respec-
tively. We also show that using the new models we were able
to reduce the overhead of prediction to 0.22 ms , 0.097 ms
and 0.026 ms for reduced Gaussian process, neural network
and lasso linear regression, respectively from 0.57 ms per
prediction using the previously developed Gaussian process
model.

When application mapping is considered, the decoupled
reduced Gaussian process, neural network and lasso linear
regression have 75 %, 82.5 % and 74.17 % success rates,
respectively compared to 72.5 % for the previously devel-
oped Gaussian process model. This results in a reduction of
average temperature by up to 11.9 ◦C ( 4.3 ◦C, 4.4 ◦C and
4.3 ◦C on average, respectively compared to 2.1 ◦C for the
previously developed Gaussian process model.
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