DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases

Abstract

Flavodiiron nitric oxide reductases (FNORs) are a subclass of Favodiiron proteins (FDPs) capable of preferential binding and subsequent reduction of NO to N2O. FNORs are found in certain pathogenic bacteria, equipping them with resistance to nitrosative stress, generated as a part of the immune defense in humans, and allowing them to proliferate. Here, we report the spectroscopic characterization and detailed reactivity studies of the diiron dinitrosyl model complex [Fe2(BPMP)(OPr)(NO)2](OTf)2 for the FNOR active site that is capable of reducing NO to N2O [Zheng et al., J. Am. Chem. Soc. 2013, 135, 4902-4905]. Using UV-vis spectroscopy, cyclic voltammetry, and spectro-electrochemis- try, we show that one reductive equivalent is in fact sufficient for the quantitative generation of N2O, following a semi-reduced reaction mechanism. This reaction is very efficient and produces N2O with a first-order rate constant k > 102 s-1. Further isotope labeling studies confirm an intramolecular N-N coupling mechanism, consistent with the rapid time scale of the reduction and a very low barrier for N-N bond formation. Accordingly, the reaction proceeds at -80 °C, allowing for the direct observation of the mixed-valent product of the reaction. At higher temperatures, the initial reaction product is unstable and decays, ultimately generating the diferrousmore » complex [Fe2(BPMP)(OPr)2](OTf) and an unidentified ferric product. Finally, these results combined offer deep insight into the mechanism of NO reduction by the relevant model complex [Fe2(BPMP)(OPr)(NO)2]2+ and provide direct evidence that the semireduced mechanism would constitute a highly efficient pathway to accomplish NO reduction to N2O in FNORs and in synthetic catalysts.« less

Authors:
 [1];  [1];  [2];  [2]; ORCiD logo [2];  [1];  [3];  [3];  [3]; ORCiD logo [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemistry
  2. Univ. of Göttingen, Göttingen (Germany). Inst. für Anorganische Chemie
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC)
OSTI Identifier:
1461298
Grant/Contract Number:  
AC02-06CH11357; CHE-0840456
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 7; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

White, Corey J., Speelman, Amy L., Kupper, Claudia, Demeshko, Serhiy, Meyer, Franc, Shanahan, James P., Alp, E. Ercan, Hu, Michael, Zhao, Jiyong, and Lehnert, Nicolai. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases. United States: N. p., 2018. Web. doi:10.1021/jacs.7b11464.
White, Corey J., Speelman, Amy L., Kupper, Claudia, Demeshko, Serhiy, Meyer, Franc, Shanahan, James P., Alp, E. Ercan, Hu, Michael, Zhao, Jiyong, & Lehnert, Nicolai. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases. United States. https://doi.org/10.1021/jacs.7b11464
White, Corey J., Speelman, Amy L., Kupper, Claudia, Demeshko, Serhiy, Meyer, Franc, Shanahan, James P., Alp, E. Ercan, Hu, Michael, Zhao, Jiyong, and Lehnert, Nicolai. Fri . "The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases". United States. https://doi.org/10.1021/jacs.7b11464. https://www.osti.gov/servlets/purl/1461298.
@article{osti_1461298,
title = {The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases},
author = {White, Corey J. and Speelman, Amy L. and Kupper, Claudia and Demeshko, Serhiy and Meyer, Franc and Shanahan, James P. and Alp, E. Ercan and Hu, Michael and Zhao, Jiyong and Lehnert, Nicolai},
abstractNote = {Flavodiiron nitric oxide reductases (FNORs) are a subclass of Favodiiron proteins (FDPs) capable of preferential binding and subsequent reduction of NO to N2O. FNORs are found in certain pathogenic bacteria, equipping them with resistance to nitrosative stress, generated as a part of the immune defense in humans, and allowing them to proliferate. Here, we report the spectroscopic characterization and detailed reactivity studies of the diiron dinitrosyl model complex [Fe2(BPMP)(OPr)(NO)2](OTf)2 for the FNOR active site that is capable of reducing NO to N2O [Zheng et al., J. Am. Chem. Soc. 2013, 135, 4902-4905]. Using UV-vis spectroscopy, cyclic voltammetry, and spectro-electrochemis- try, we show that one reductive equivalent is in fact sufficient for the quantitative generation of N2O, following a semi-reduced reaction mechanism. This reaction is very efficient and produces N2O with a first-order rate constant k > 102 s-1. Further isotope labeling studies confirm an intramolecular N-N coupling mechanism, consistent with the rapid time scale of the reduction and a very low barrier for N-N bond formation. Accordingly, the reaction proceeds at -80 °C, allowing for the direct observation of the mixed-valent product of the reaction. At higher temperatures, the initial reaction product is unstable and decays, ultimately generating the diferrous complex [Fe2(BPMP)(OPr)2](OTf) and an unidentified ferric product. Finally, these results combined offer deep insight into the mechanism of NO reduction by the relevant model complex [Fe2(BPMP)(OPr)(NO)2]2+ and provide direct evidence that the semireduced mechanism would constitute a highly efficient pathway to accomplish NO reduction to N2O in FNORs and in synthetic catalysts.},
doi = {10.1021/jacs.7b11464},
journal = {Journal of the American Chemical Society},
number = 7,
volume = 140,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2018},
month = {Fri Jan 19 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reactions of Nitric Oxide with the Reduced Non-Heme Diiron Center of the Soluble Methane Monooxygenase Hydroxylase
journal, April 1999

  • Coufal, David E.; Tavares, Pedro; Pereira, Alice S.
  • Biochemistry, Vol. 38, Issue 14
  • DOI: 10.1021/bi9823378

Versatile Reactivity of a Solvent-Coordinated Diiron(II) Compound: Synthesis and Dioxygen Reactivity of a Mixed-Valent Fe II Fe III Species
journal, December 2013

  • Majumdar, Amit; Apfel, Ulf-Peter; Jiang, Yunbo
  • Inorganic Chemistry, Vol. 53, Issue 1
  • DOI: 10.1021/ic4019585

Histidine ligand variants of a flavo-diiron protein: effects on structure and activities
journal, September 2012

  • Fang, Han; Caranto, Jonathan D.; Mendoza, Rosalinda
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 17, Issue 8
  • DOI: 10.1007/s00775-012-0938-4

Desulfovibrio gigas Flavodiiron Protein Affords Protection against Nitrosative Stress In Vivo
journal, April 2006


Models for iron-oxo proteins. Structures and properties of FeIIFeIII, ZnIIFeIII, and FeIIGaIII complexes with (.mu.-phenoxo)bis(.mu.-carboxylato)dimetal cores
journal, August 1989

  • Borovik, A. S.; Papaefthymiou, Vasilios; Taylor, Lucille F.
  • Journal of the American Chemical Society, Vol. 111, Issue 16
  • DOI: 10.1021/ja00198a032

Flavorubredoxin, an Inducible Catalyst for Nitric Oxide Reduction and Detoxification in Escherichia coli
journal, March 2002

  • Gardner, Anne M.; Helmick, Ryan A.; Gardner, Paul R.
  • Journal of Biological Chemistry, Vol. 277, Issue 10
  • DOI: 10.1074/jbc.M110471200

Mono- and dinuclear non-heme iron–nitrosyl complexes: Models for key intermediates in bacterial nitric oxide reductases
journal, January 2013

  • Berto, Timothy C.; Speelman, Amy L.; Zheng, Sheng
  • Coordination Chemistry Reviews, Vol. 257, Issue 1
  • DOI: 10.1016/j.ccr.2012.05.007

Nitric Oxide and Macrophage Function
journal, April 1997


Insights into the Nitric Oxide Reductase Mechanism of Flavodiiron Proteins from a Flavin-Free Enzyme
journal, August 2010

  • Hayashi, Takahiro; Caranto, Jonathan D.; Wampler, David A.
  • Biochemistry, Vol. 49, Issue 33
  • DOI: 10.1021/bi100788y

Spectroscopic and magnetic studies of the purple acid phosphatase from bovine spleen
journal, June 1987

  • Averill, Bruce A.; Davis, James C.; Burman, Sudhir
  • Journal of the American Chemical Society, Vol. 109, Issue 12
  • DOI: 10.1021/ja00246a039

Models for iron-oxo proteins: a mixed valence iron(II)-iron(III) complex
journal, November 1987

  • Borovik, A. S.; Murch, B. P.; Que, L.
  • Journal of the American Chemical Society, Vol. 109, Issue 23
  • DOI: 10.1021/ja00257a048

The Functional Model Complex [Fe 2 (BPMP)(OPr)(NO) 2 ](BPh 4 ) 2 Provides Insight into the Mechanism of Flavodiiron NO Reductases
journal, March 2013

  • Zheng, Sheng; Berto, Timothy C.; Dahl, Eric W.
  • Journal of the American Chemical Society, Vol. 135, Issue 13
  • DOI: 10.1021/ja309782m

Structural and Electronic Characterization of Non-Heme Fe(II)–Nitrosyls as Biomimetic Models of the Fe B Center of Bacterial Nitric Oxide Reductase
journal, October 2011

  • Berto, Timothy C.; Hoffman, Melissa B.; Murata, Yuki
  • Journal of the American Chemical Society, Vol. 133, Issue 42
  • DOI: 10.1021/ja111693f

Light-Induced N 2 O Production from a Non-heme Iron–Nitrosyl Dimer
journal, August 2014

  • Jiang, Yunbo; Hayashi, Takahiro; Matsumura, Hirotoshi
  • Journal of the American Chemical Society, Vol. 136, Issue 36
  • DOI: 10.1021/ja504343t

A Flavo-Diiron Protein from Desulfovibrio vulgaris with Oxidase and Nitric Oxide Reductase Activities. Evidence for an in Vivo Nitric Oxide Scavenging Function
journal, March 2005

  • Silaghi-Dumitrescu, Radu; Ng, Kim Yong; Viswanathan, Rathinam
  • Biochemistry, Vol. 44, Issue 9
  • DOI: 10.1021/bi0477337

Spectroscopic and Computational Study of a Non-Heme Iron {Fe−NO} 7 System:  Exploring the Geometric and Electronic Structures of the Nitrosyl Adduct of Iron Superoxide Dismutase
journal, July 2003

  • Jackson, Timothy A.; Yikilmaz, Emine; Miller, Anne-Frances
  • Journal of the American Chemical Society, Vol. 125, Issue 27
  • DOI: 10.1021/ja029523s

Spectroscopic and theoretical description of the electronic structure of the S = 3/2 nitrosyl complex of non-heme iron enzymes
journal, November 1992

  • Zhang, Yan; Pavlosky, Mark A.; Brown, Carl A.
  • Journal of the American Chemical Society, Vol. 114, Issue 23
  • DOI: 10.1021/ja00049a062

VTVH-MCD and DFT Studies of Thiolate Bonding to {FeNO} 7 /{FeO 2 } 8 Complexes of Isopenicillin N Synthase:  Substrate Determination of Oxidase versus Oxygenase Activity in Nonheme Fe Enzymes
journal, June 2007

  • Brown, Christina D.; Neidig, Michael L.; Neibergall, Matthew B.
  • Journal of the American Chemical Society, Vol. 129, Issue 23
  • DOI: 10.1021/ja071364v

The dual function of flavodiiron proteins: oxygen and/or nitric oxide reductases
journal, January 2016

  • Romão, Célia V.; Vicente, João B.; Borges, Patrícia T.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 21, Issue 1
  • DOI: 10.1007/s00775-015-1329-4

The hyperthermophilic anaerobe Thermotoga Maritima is able to cope with limited amount of oxygen: insights into its defence strategies
journal, July 2008


Vibrational Analysis of Mononitrosyl Complexes in Hemerythrin and Flavodiiron Proteins: Relevance to Detoxifying NO Reductase
journal, April 2012

  • Hayashi, Takahiro; Caranto, Jonathan D.; Matsumura, Hirotoshi
  • Journal of the American Chemical Society, Vol. 134, Issue 15
  • DOI: 10.1021/ja301812p

Reaction of NO with the Reduced R2 Protein of Ribonucleotide Reductase from Escherichia coli
journal, September 1995

  • Haskin, Charlene J.; Ravi, Natarajan; Lynch, John B.
  • Biochemistry, Vol. 34, Issue 35
  • DOI: 10.1021/bi00035a014

Steric Control of Reactivity of Non-Heme μ-Hydroxo Diiron(II) Complexes with Oxygen:  Isolation of a Strongly Coupled μ-Oxo Fe(II)Fe(III) Dimer
journal, July 2000

  • Payne, Sonha C.; Hagen, Karl S.
  • Journal of the American Chemical Society, Vol. 122, Issue 27
  • DOI: 10.1021/ja991885l

Principles of structure, bonding, and reactivity for metal nitrosyl complexes
journal, September 1974


The Nitric Oxide Reductase Mechanism of a Flavo-Diiron Protein: Identification of Active-Site Intermediates and Products
journal, May 2014

  • Caranto, Jonathan D.; Weitz, Andrew; Hendrich, Michael P.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5022443

A Nonheme, High-Spin {FeNO} 8 Complex that Spontaneously Generates N 2 O
journal, July 2017

  • Confer, Alex M.; McQuilken, Alison C.; Matsumura, Hirotoshi
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b05549

Models for diferrous forms of iron-oxo proteins. Structure and properties of [Fe2BPMP(O2CR)2]BPh4 complexes
journal, August 1990

  • Borovik, A. S.; Hendrich, M. P.; Holman, T. R.
  • Journal of the American Chemical Society, Vol. 112, Issue 16
  • DOI: 10.1021/ja00172a019

Functional Mononitrosyl Diiron(II) Complex Mediates the Reduction of NO to N 2 O with Relevance for Flavodiiron NO Reductases
journal, September 2017

  • Jana, Manish; Pal, Nabhendu; White, Corey J.
  • Journal of the American Chemical Society, Vol. 139, Issue 41
  • DOI: 10.1021/jacs.7b08855

Reductive Transformations of a Pyrazolate-Based Bioinspired Diiron–Dinitrosyl Complex
journal, October 2016


Characterization of a High-Spin Non-Heme {FeNO} 8 Complex: Implications for the Reactivity of Iron Nitroxyl Species in Biology
journal, October 2013

  • Speelman, Amy L.; Lehnert, Nicolai
  • Angewandte Chemie International Edition, Vol. 52, Issue 47
  • DOI: 10.1002/anie.201305291

X-ray Crystal Structures of Moorella thermoacetica FprA. Novel Diiron Site Structure and Mechanistic Insights into a Scavenging Nitric Oxide Reductase ,
journal, May 2005

  • Silaghi-Dumitrescu, Radu; Kurtz,, Donald M.; Ljungdahl, Lars G.
  • Biochemistry, Vol. 44, Issue 17
  • DOI: 10.1021/bi0473049

Syntheses and Characterization of Dinuclear Iron(II, II) and Iron(II, III) Complexes with a Dinucleating Ligand, 2,6-Bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenolate (1—)
journal, October 1987

  • Suzuki, Masatatu; Uehara, Akira; Oshio, Hiroki
  • Bulletin of the Chemical Society of Japan, Vol. 60, Issue 10
  • DOI: 10.1246/bcsj.60.3547

Models for the iron(II)iron(III) and iron(II)iron(II) forms of iron-oxo proteins
journal, March 1988

  • Borovik, A. S.; Que, Lawrence.
  • Journal of the American Chemical Society, Vol. 110, Issue 7
  • DOI: 10.1021/ja00215a079

A Carboxylate-Bridged Non-Heme Diiron Dinitrosyl Complex
journal, January 1996

  • Feig, Andrew L.; Bautista, Maria T.; Lippard, Stephen J.
  • Inorganic Chemistry, Vol. 35, Issue 23
  • DOI: 10.1021/ic960552b

A Diferrous-Dinitrosyl Intermediate in the N 2 O-Generating Pathway of a Deflavinated Flavo-Diiron Protein
journal, August 2014

  • Caranto, Jonathan D.; Weitz, Andrew; Giri, Nitai
  • Biochemistry, Vol. 53, Issue 35
  • DOI: 10.1021/bi500836z

Synthesis and Properties of Binuclear Cobalt(Ii) Oxygen Adduct with 2,6-Bis[Bis(2-Pyridylmethyl)Aminomethyl]-4-Methylphenol
journal, December 1981

  • Suzuki, Masatatsu; Kanatomi, Hajime; Murase, Ichiro
  • Chemistry Letters, Vol. 10, Issue 12
  • DOI: 10.1246/cl.1981.1745

Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide
journal, September 1998


Nuclear resonance vibrational spectroscopy of a protein active-site mimic
journal, August 2001


Structural and Spectroscopic Characterization of a High-Spin {FeNO} 6 Complex with an Iron(IV)−NO Electronic Structure
journal, April 2016

  • Speelman, Amy L.; Zhang, Bo; Krebs, Carsten
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201601742

Spectroscopic and Theoretical Description of the Electronic Structure of S = 3/2 Iron-Nitrosyl Complexes and Their Relation to O2 Activation by Non-Heme Iron Enzyme Active Sites
journal, January 1995

  • Brown, Carl A.; Pavlosky, Mark A.; Westre, Tami E.
  • Journal of the American Chemical Society, Vol. 117, Issue 2
  • DOI: 10.1021/ja00107a015

Syntheses and Characterization of Dinuclear High-Spin Iron(II,III) and (III,III) Complexes with 2,6-Bis[bis(2-benzimidazolylmethyl)aminomethyl]-4-methylphenolate(1—)
journal, November 1988

  • Suzuki, Masatatsu; Oshio, Hiroki; Uehara, Akira
  • Bulletin of the Chemical Society of Japan, Vol. 61, Issue 11
  • DOI: 10.1246/bcsj.61.3907

A Flavodiiron Protein and High Molecular Weight Rubredoxin from Moorella thermoacetica with Nitric Oxide Reductase Activity
journal, March 2003

  • Silaghi-Dumitrescu, Radu; Coulter, Eric D.; Das, Amaresh
  • Biochemistry, Vol. 42, Issue 10
  • DOI: 10.1021/bi027253k

Flavo-diiron enzymes: nitric oxide or dioxygen reductases?
journal, January 2007


Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. Mössbauer and EPR studies.
journal, August 1988


Works referencing / citing this record:

Origin of Nitric Oxide Reduction Activity in Flavo–Diiron NO Reductase: Key Roles of the Second Coordination Sphere
journal, February 2019


Homochiral iron( ii )-based metal–organic nanotubes: metamagnetism and selective nitric oxide adsorption in a confined channel
journal, January 2019

  • Jia, Jia-Ge; Feng, Jian-Shen; Huang, Xin-Da
  • Chemical Communications, Vol. 55, Issue 19
  • DOI: 10.1039/c9cc00506d

Reductive Nitric Oxide Coupling at a Dinickel Core: Isolation of a Key cis ‐Hyponitrite Intermediate en route to N 2 O Formation
journal, January 2019

  • Ferretti, Eleonora; Dechert, Sebastian; Demeshko, Serhiy
  • Angewandte Chemie, Vol. 131, Issue 6
  • DOI: 10.1002/ange.201811925

The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Non-Heme Iron-NO Chemistry
journal, October 2019

  • Dong, Hai T.; Speelman, Amy L.; Kozemchak, Claire E.
  • Angewandte Chemie International Edition, Vol. 58, Issue 49
  • DOI: 10.1002/anie.201911968

A Nonheme Sulfur-Ligated {FeNO} 6 Complex and Comparison with Redox-Interconvertible {FeNO} 7 and {FeNO} 8 Analogues
journal, September 2018

  • Dey, Aniruddha; Confer, Alex M.; Vilbert, Avery C.
  • Angewandte Chemie, Vol. 130, Issue 41
  • DOI: 10.1002/ange.201806146

Origin of Nitric Oxide Reduction Activity in Flavo–Diiron NO Reductase: Key Roles of the Second Coordination Sphere
journal, March 2019

  • Lu, Jiarui; Bi, Bo; Lai, Wenzhen
  • Angewandte Chemie International Edition, Vol. 58, Issue 12
  • DOI: 10.1002/anie.201812343

The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Non‐Heme Iron–NO Chemistry
journal, October 2019

  • Dong, Hai T.; Speelman, Amy L.; Kozemchak, Claire E.
  • Angewandte Chemie, Vol. 131, Issue 49
  • DOI: 10.1002/ange.201911968

A Nonheme Sulfur-Ligated {FeNO} 6 Complex and Comparison with Redox-Interconvertible {FeNO} 7 and {FeNO} 8 Analogues
journal, September 2018

  • Dey, Aniruddha; Confer, Alex M.; Vilbert, Avery C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 41
  • DOI: 10.1002/anie.201806146

Reductive Nitric Oxide Coupling at a Dinickel Core: Isolation of a Key cis -Hyponitrite Intermediate en route to N 2 O Formation
journal, January 2019

  • Ferretti, Eleonora; Dechert, Sebastian; Demeshko, Serhiy
  • Angewandte Chemie International Edition, Vol. 58, Issue 6
  • DOI: 10.1002/anie.201811925

Nitric oxide reduction forming hyponitrite triggered by metal‐containing complexes
journal, January 2020

  • Wu, Wun‐Yan; Liaw, Wen‐Feng
  • Journal of the Chinese Chemical Society, Vol. 67, Issue 2
  • DOI: 10.1002/jccs.201900473