DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Abstract

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3–5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5–3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] asmore » a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1] more »;  [1]; ORCiD logo [1];  [1] « less
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1459929
Alternate Identifier(s):
OSTI ID: 1422024
Report Number(s):
SAND-2018-6872J
Journal ID: ISSN 1070-664X; 664963; TRN: US1901826
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Geissel, Matthias, Harvey-Thompson, Adam J., Awe, Thomas J., Bliss, David E., Glinsky, Michael E., Gomez, Matthew R., Harding, Eric, Hansen, Stephanie B., Jennings, Christopher, Kimmel, Mark W., Knapp, Patrick, Lewis, Sean M., Peterson, Kyle, Schollmeier, Marius, Schwarz, Jens, Shores, Jonathon E., Slutz, Stephen A., Sinars, Daniel B., Smith, Ian C., Speas, C. Shane, Vesey, Roger A., Weis, Matthew R., and Porter, John L. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets. United States: N. p., 2018. Web. doi:10.1063/1.5003038.
Geissel, Matthias, Harvey-Thompson, Adam J., Awe, Thomas J., Bliss, David E., Glinsky, Michael E., Gomez, Matthew R., Harding, Eric, Hansen, Stephanie B., Jennings, Christopher, Kimmel, Mark W., Knapp, Patrick, Lewis, Sean M., Peterson, Kyle, Schollmeier, Marius, Schwarz, Jens, Shores, Jonathon E., Slutz, Stephen A., Sinars, Daniel B., Smith, Ian C., Speas, C. Shane, Vesey, Roger A., Weis, Matthew R., & Porter, John L. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets. United States. https://doi.org/10.1063/1.5003038
Geissel, Matthias, Harvey-Thompson, Adam J., Awe, Thomas J., Bliss, David E., Glinsky, Michael E., Gomez, Matthew R., Harding, Eric, Hansen, Stephanie B., Jennings, Christopher, Kimmel, Mark W., Knapp, Patrick, Lewis, Sean M., Peterson, Kyle, Schollmeier, Marius, Schwarz, Jens, Shores, Jonathon E., Slutz, Stephen A., Sinars, Daniel B., Smith, Ian C., Speas, C. Shane, Vesey, Roger A., Weis, Matthew R., and Porter, John L. Wed . "Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets". United States. https://doi.org/10.1063/1.5003038. https://www.osti.gov/servlets/purl/1459929.
@article{osti_1459929,
title = {Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets},
author = {Geissel, Matthias and Harvey-Thompson, Adam J. and Awe, Thomas J. and Bliss, David E. and Glinsky, Michael E. and Gomez, Matthew R. and Harding, Eric and Hansen, Stephanie B. and Jennings, Christopher and Kimmel, Mark W. and Knapp, Patrick and Lewis, Sean M. and Peterson, Kyle and Schollmeier, Marius and Schwarz, Jens and Shores, Jonathon E. and Slutz, Stephen A. and Sinars, Daniel B. and Smith, Ian C. and Speas, C. Shane and Vesey, Roger A. and Weis, Matthew R. and Porter, John L.},
abstractNote = {The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3–5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5–3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.},
doi = {10.1063/1.5003038},
journal = {Physics of Plasmas},
number = 2,
volume = 25,
place = {United States},
year = {Wed Feb 21 00:00:00 EST 2018},
month = {Wed Feb 21 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Experiments and multiscale simulations of laser propagation through ignition-scale plasmas
journal, September 2007

  • Glenzer, S. H.; Froula, D. H.; Divol, L.
  • Nature Physics, Vol. 3, Issue 10
  • DOI: 10.1038/nphys709

Stimulated Raman scattering, two-plasmon decay, and hot electron generation from underdense plasmas at 0.35 μm
journal, January 1984

  • Figueroa, H.; Joshi, C.; Azechi, H.
  • Physics of Fluids, Vol. 27, Issue 7
  • DOI: 10.1063/1.864801

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression
journal, September 1984


Control of Stimulated Raman Scattering in the Strongly Nonlinear and Kinetic Regime Using Spike Trains of Uneven Duration and Delay
journal, July 2014


Monochromatic x-ray imaging experiments on the Sandia National Laboratories Z facility (invited)
journal, October 2004

  • Sinars, D. B.; Bennett, G. R.; Wenger, D. F.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1779607

Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams
journal, May 2000

  • Still, C. H.; Berger, R. L.; Langdon, A. B.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874055

Distributed phase plates for super-Gaussian focal-plane irradiance profiles
journal, January 1995

  • Lin, Y.; Lawrence, G. N.; Kessler, T. J.
  • Optics Letters, Vol. 20, Issue 7
  • DOI: 10.1364/OL.20.000764

Intensity Limits for Propagation of 0.527 μ m Laser Beams through Large-Scale-Length Plasmas for Inertial Confinement Fusion
journal, March 2005


Ray-based calculations of backscatter in laser fusion targets
journal, October 2008

  • Strozzi, D. J.; Williams, E. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 15, Issue 10
  • DOI: 10.1063/1.2992522

Numerical simulation of filamentation and its interplay with SBS in underdense plasmas
journal, January 1996


Theory of induced spatial incoherence
journal, October 1987

  • Lehmberg, R. H.; Schmitt, A. J.; Bodner, S. E.
  • Journal of Applied Physics, Vol. 62, Issue 7
  • DOI: 10.1063/1.339419

The Physics of Inertial Fusion
book, January 2004


Time-dependent filamentation and stimulated Brillouin forward scattering in inertial confinement fusion plasmas
journal, February 1998

  • Schmitt, Andrew J.; Afeyan, Bedros B.
  • Physics of Plasmas, Vol. 5, Issue 2
  • DOI: 10.1063/1.872733

Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light
journal, October 1989

  • Skupsky, S.; Short, R. W.; Kessler, T.
  • Journal of Applied Physics, Vol. 66, Issue 8
  • DOI: 10.1063/1.344101

Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments
journal, February 2001

  • Cohen, Bruce I.; Baldis, Hector A.; Berger, Richard L.
  • Physics of Plasmas, Vol. 8, Issue 2
  • DOI: 10.1063/1.1339234

Fabrication details, calibrations, and installation activities of magnetic diagnostics for Korea Superconducting Tokamak Advanced Research
journal, October 2006

  • Lee, S. G.; Bak, J. G.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2227437

Pulsed-coil magnet systems for applying uniform 10–30 T fields to centimeter-scale targets on Sandia's Z facility
journal, December 2014

  • Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.
  • Review of Scientific Instruments, Vol. 85, Issue 12
  • DOI: 10.1063/1.4902566

Modeling stimulated Brillouin scattering in the underdense corona of a direct drive inertial confinement fusion target
journal, July 2004

  • Myatt, J.; Maximov, A. V.; Seka, W.
  • Physics of Plasmas, Vol. 11, Issue 7
  • DOI: 10.1063/1.1755708

Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Ideal Laser-Beam Propagation through High-Temperature Ignition Hohlraum Plasmas
journal, February 2007


Suppression of Stimulated Brillouin Scattering by Increased Landau Damping in Multiple-Ion-Species Hohlraum Plasmas
journal, March 2008


Penetrating Radiography of Imploding and Stagnating Beryllium Liners on the Z Accelerator
journal, September 2012


Evidence of stimulated Brillouin backscattering from a plasma at short laser wavelengths
journal, July 1985


Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams
journal, December 1998

  • Berger, R. L.; Still, C. H.; Williams, E. A.
  • Physics of Plasmas, Vol. 5, Issue 12
  • DOI: 10.1063/1.873171

Kinoform phase plates for focal plane irradiance profile control
journal, January 1994

  • Dixit, S. N.; Nugent, K. A.; Lawson, J. K.
  • Optics Letters, Vol. 19, Issue 6
  • DOI: 10.1364/OL.19.000417

Effect of Ion-Wave Damping on Stimulated Raman Scattering in High- Z Laser-Produced Plasmas
journal, September 1996


Laser–plasma interactions in ignition‐scale hohlraum plasmas
journal, May 1996

  • MacGowan, B. J.; Afeyan, B. B.; Back, C. A.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872000

High-Gain Magnetized Inertial Fusion
journal, January 2012


Three‐dimensional simulations of Nova high growth factor capsule implosion experiments
journal, May 1996

  • Marinak, M. M.; Tipton, R. E.; Landen, O. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872004

Energetics of Inertial Confinement Fusion Hohlraum Plasmas
journal, March 1998


Studies of Raman scattering from overdense targets irradiated by several kilojoules of 0.53 μm laser light
journal, January 1988

  • Drake, R. P.; Turner, R. E.; Lasinski, B. F.
  • Physics of Fluids, Vol. 31, Issue 10
  • DOI: 10.1063/1.866970

Measurements of laser-plasma instability relevant to ignition hohlraums
journal, May 1997

  • Fernández, Juan C.; Bauer, Bruno S.; Cobble, James A.
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872328

Z-Beamlet: a multikilojoule, terawatt-class laser system
journal, January 2005

  • Rambo, Patrick K.; Smith, Ian C.; Porter, John L.
  • Applied Optics, Vol. 44, Issue 12
  • DOI: 10.1364/AO.44.002421

Suppression of interference speckles produced by a random phase plate, using a polarization control plate
journal, July 1992


Measurements of Nonlinear Growth of Ion-Acoustic Waves in Two-Ion-Species Plasmas with Thomson Scattering
journal, February 2002


Works referencing / citing this record:

Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion
journal, June 2018

  • Davies, J. R.; Bahr, R. E.; Barnak, D. H.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5030107

Diagnosing and mitigating laser preheat induced mix in MagLIF
journal, November 2018

  • Harvey-Thompson, A. J.; Weis, M. R.; Harding, E. C.
  • Physics of Plasmas, Vol. 25, Issue 11
  • DOI: 10.1063/1.5050931

Phase modulation failsafe system for multi-kJ lasers based on optical heterodyne detection
journal, October 2018

  • Armstrong, D. J.; Looker, Q. M.; Stahoviak, J. W.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5051125

Enhancing performance of magnetized liner inertial fusion at the Z facility
journal, November 2018

  • Slutz, S. A.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 25, Issue 11
  • DOI: 10.1063/1.5054317

Origins and effects of mix on magnetized liner inertial fusion target performance
journal, January 2019

  • Knapp, P. F.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5064548

Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy
journal, March 2019

  • Harvey-Thompson, A. J.; Geissel, M.; Jennings, C. A.
  • Physics of Plasmas, Vol. 26, Issue 3
  • DOI: 10.1063/1.5086044