DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal

Abstract

Transition state theory (TST) methods are useful for predicting adsorbate diffusivities in nanoporous materials at timescales inaccessible to molecular dynamics (MD). Most TST applications treat the nanoporous framework as rigid, which is inaccurate in highly flexible materials or where adsorbate dimensions are comparable to the size of pore aperatures. In this study, we demonstrate two computationally efficient TST methods for simulating adsorbate diffusion in nanoporous materials where framework flexibility has a significant influence on diffusion. These methods are applied to light gas diffusion in porous organic cage crystal 3 (CC3), a highly flexible molecular crystal that has shown promise in gas separation applications. Diffusion in CC3 is modeled as a series of uncorrelated adsorbate hops between cage molecules and the voids between adjacent cages. The first method we applied to compute adsorbate hopping rates in CC3 is implicit ligand sampling (ILS). In ILS TST, hopping rates are calculated in an ensemble of rigid framework snapshots captured from a fully flexible MD trajectory of the empty CC3 structure. The second TST method we applied is umbrella sampling (US), where hopping rates are computed from a series of biased MD simulations. Our ILS and US TST calculations are shown to agree wellmore » with direct MD simulation of adsorbate diffusion in CC3. We anticipate that the efficient TST methods detailed here will be broadly applicable other classes of flexible nanoporous materials such as metal–organic frameworks.« less

Authors:
 [1];  [1]
  1. Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical & Biomolecular Engineering
Publication Date:
Research Org.:
University of Minnesota Nanoporous Materials Genome Center
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1459353
Grant/Contract Number:  
FG02-12ER16362; SC0008688
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 2; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; transition state theory; hopping rate; diffusion; molecular dynamics; porous organic cage; cage crystal 3; framework flexibility

Citation Formats

Camp, Jeffrey S., and Sholl, David S. Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal. United States: N. p., 2016. Web. doi:10.1021/acs.jpcc.5b11111.
Camp, Jeffrey S., & Sholl, David S. Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal. United States. https://doi.org/10.1021/acs.jpcc.5b11111
Camp, Jeffrey S., and Sholl, David S. Wed . "Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal". United States. https://doi.org/10.1021/acs.jpcc.5b11111. https://www.osti.gov/servlets/purl/1459353.
@article{osti_1459353,
title = {Transition State Theory Methods To Measure Diffusion in Flexible Nanoporous Materials: Application to a Porous Organic Cage Crystal},
author = {Camp, Jeffrey S. and Sholl, David S.},
abstractNote = {Transition state theory (TST) methods are useful for predicting adsorbate diffusivities in nanoporous materials at timescales inaccessible to molecular dynamics (MD). Most TST applications treat the nanoporous framework as rigid, which is inaccurate in highly flexible materials or where adsorbate dimensions are comparable to the size of pore aperatures. In this study, we demonstrate two computationally efficient TST methods for simulating adsorbate diffusion in nanoporous materials where framework flexibility has a significant influence on diffusion. These methods are applied to light gas diffusion in porous organic cage crystal 3 (CC3), a highly flexible molecular crystal that has shown promise in gas separation applications. Diffusion in CC3 is modeled as a series of uncorrelated adsorbate hops between cage molecules and the voids between adjacent cages. The first method we applied to compute adsorbate hopping rates in CC3 is implicit ligand sampling (ILS). In ILS TST, hopping rates are calculated in an ensemble of rigid framework snapshots captured from a fully flexible MD trajectory of the empty CC3 structure. The second TST method we applied is umbrella sampling (US), where hopping rates are computed from a series of biased MD simulations. Our ILS and US TST calculations are shown to agree well with direct MD simulation of adsorbate diffusion in CC3. We anticipate that the efficient TST methods detailed here will be broadly applicable other classes of flexible nanoporous materials such as metal–organic frameworks.},
doi = {10.1021/acs.jpcc.5b11111},
journal = {Journal of Physical Chemistry. C},
number = 2,
volume = 120,
place = {United States},
year = {Wed Jan 06 00:00:00 EST 2016},
month = {Wed Jan 06 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Diffusion in Nanoporous Materials
book, April 2012


Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials
journal, March 2009

  • Keskin, Seda; Liu, Jinchen; Rankin, Rees B.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 5
  • DOI: 10.1021/ie800666s

Molecular dynamics study of methane and xenon in silicalite
journal, October 1990

  • June, R. Larry.; Bell, Alexis T.; Theodorou, Doros N.
  • The Journal of Physical Chemistry, Vol. 94, Issue 21
  • DOI: 10.1021/j100384a047

Adsorption Sites and Diffusion Rates of Benzene in HY Zeolite by Force Field Based Simulations
journal, March 2000

  • Jousse, Fabien; Auerbach, Scott M.; Vercauteren, Daniel P.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 10
  • DOI: 10.1021/jp9935642

Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH 4 and CO 2 in ZIF-8
journal, July 2012

  • Haldoupis, Emmanuel; Watanabe, Taku; Nair, Sankar
  • ChemPhysChem, Vol. 13, Issue 15
  • DOI: 10.1002/cphc.201200529

Porous organic molecules
journal, October 2010

  • Holst, James R.; Trewin, Abbie; Cooper, Andrew I.
  • Nature Chemistry, Vol. 2, Issue 11
  • DOI: 10.1038/nchem.873

Development of organic porous materials through Schiff-base chemistry
journal, January 2013

  • Jin, Yinghua; Zhu, Youlong; Zhang, Wei
  • CrystEngComm, Vol. 15, Issue 8
  • DOI: 10.1039/C2CE26394G

A Theoretical Study of Cohesion, Structural Deformation, Inclusion, and Dynamics in Porous Hydrogen-Bonded Molecular Networks
journal, March 2007

  • Trolliet, Cédric; Poulet, Guillaume; Tuel, Alain
  • Journal of the American Chemical Society, Vol. 129, Issue 12
  • DOI: 10.1021/ja067844o

Porous organic cages
journal, October 2009

  • Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.
  • Nature Materials, Vol. 8, Issue 12, p. 973-978
  • DOI: 10.1038/nmat2545

Porous Organic Cage Nanocrystals by Solution Mixing
journal, December 2011

  • Hasell, Tom; Chong, Samantha Y.; Jelfs, Kim E.
  • Journal of the American Chemical Society, Vol. 134, Issue 1
  • DOI: 10.1021/ja209156v

Reversible water uptake by a stable imine-based porous organic cage
journal, January 2012

  • Hasell, Tom; Schmidtmann, Marc; Stone, Corinne A.
  • Chemical Communications, Vol. 48, Issue 39
  • DOI: 10.1039/c2cc31212c

Molecular shape sorting using molecular organic cages
journal, January 2013

  • Mitra, Tamoghna; Jelfs, Kim E.; Schmidtmann, Marc
  • Nature Chemistry, Vol. 5, Issue 4
  • DOI: 10.1038/nchem.1550

Separation of rare gases and chiral molecules by selective binding in porous organic cages
journal, July 2014

  • Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4035

Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory
journal, June 2005

  • Dubbeldam, D.; Beerdsen, E.; Vlugt, T. J. H.
  • The Journal of Chemical Physics, Vol. 122, Issue 22
  • DOI: 10.1063/1.1924548

Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous Organic Cages
journal, January 2014

  • Evans, Jack D.; Huang, David M.; Hill, Matthew R.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 3
  • DOI: 10.1021/jp4079184

Modeling Diffusion of Linear Hydrocarbons in Silica Zeolite LTA Using Transition Path Sampling
journal, June 2015

  • Boulfelfel, Salah Eddine; Ravikovitch, Peter I.; Sholl, David S.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b01633

The Cambridge Structural Database: a quarter of a million crystal structures and rising
journal, May 2002


Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations
journal, June 2010

  • Haldoupis, Emmanuel; Nair, Sankar; Sholl, David S.
  • Journal of the American Chemical Society, Vol. 132, Issue 21
  • DOI: 10.1021/ja1023699

Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
journal, February 2012


DREIDING: a generic force field for molecular simulations
journal, December 1990

  • Mayo, Stephen L.; Olafson, Barry D.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 94, Issue 26, p. 8897-8909
  • DOI: 10.1021/j100389a010

Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model
journal, August 1995

  • Harris, Jonathan G.; Yung, Kwong H.
  • The Journal of Physical Chemistry, Vol. 99, Issue 31
  • DOI: 10.1021/j100031a034

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Bespoke Force Field for Simulating the Molecular Dynamics of Porous Organic Cages
journal, July 2012

  • Holden, Daniel; Jelfs, Kim E.; Cooper, Andrew I.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 31
  • DOI: 10.1021/jp305129w

Structural Relaxation Made Simple
journal, October 2006


Diffusivity for diffusion between e and g interstitial sites in the C15 AB 2 structure
journal, February 2005


Gas Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore Connectivity Using Molecular Dynamics Simulations
journal, June 2014

  • Holden, Daniel; Jelfs, Kim E.; Trewin, Abbie
  • The Journal of Physical Chemistry C, Vol. 118, Issue 24
  • DOI: 10.1021/jp500293s

Molecular simulations to understand and to design porous organic molecules
journal, February 2013


On entropic barriers for diffusion in zeolites: A molecular dynamics study
journal, June 2002

  • Schüring, Andreas; Auerbach, Scott M.; Fritzsche, Siegfried
  • The Journal of Chemical Physics, Vol. 116, Issue 24
  • DOI: 10.1063/1.1480011

Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases
journal, January 2012

  • Abouelnasr, Mahmoud K. F.; Smit, Berend
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 33
  • DOI: 10.1039/c2cp41147d

Topographic distance and watershed lines
journal, July 1994


A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Finding Gas Migration Pathways in Proteins Using Implicit Ligand Sampling
book, April 2008


Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH 4 Diffusion in Eight Member Ring Zeolites
journal, June 2013

  • Awati, Rohan V.; Ravikovitch, Peter I.; Sholl, David S.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp402959t

On-Off Porosity Switching in a Molecular Organic Solid
journal, November 2010

  • Jones, James T. A.; Holden, Daniel; Mitra, Tamoghna
  • Angewandte Chemie International Edition, Vol. 50, Issue 3
  • DOI: 10.1002/anie.201006030

Carbon Dioxide and Methane Transport in DDR Zeolite: Insights from Molecular Simulations into Carbon Dioxide Separations in Small Pore Zeolites
journal, June 2009

  • Jee, Sang Eun; Sholl, David S.
  • Journal of the American Chemical Society, Vol. 131, Issue 22
  • DOI: 10.1021/ja901483e

The calculation of the potential of mean force using computer simulations
journal, September 1995


Dimensionality reduction of free energy profiles of benzene in silicalite-1: calculation of diffusion coefficients using transition state theory
journal, December 2013

  • Kolokathis, Panagiotis D.; Pantatosaki, Evangelia; Gatsiou, Christina-Anna
  • Molecular Simulation, Vol. 40, Issue 1-3
  • DOI: 10.1080/08927022.2013.840895

Using collective variables to drive molecular dynamics simulations
journal, December 2013


THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
journal, October 1992

  • Kumar, Shankar; Rosenberg, John M.; Bouzida, Djamal
  • Journal of Computational Chemistry, Vol. 13, Issue 8
  • DOI: 10.1002/jcc.540130812

High accuracy geometric analysis of crystalline porous materials
journal, January 2013

  • Pinheiro, Marielle; Martin, Richard L.; Rycroft, Chris H.
  • CrystEngComm, Vol. 15, Issue 37
  • DOI: 10.1039/c3ce41057a

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Implementing molecular dynamics on hybrid high performance computers – short range forces
journal, April 2011

  • Brown, W. Michael; Wang, Peng; Plimpton, Steven J.
  • Computer Physics Communications, Vol. 182, Issue 4
  • DOI: 10.1016/j.cpc.2010.12.021

Implementing molecular dynamics on hybrid high performance computers – Particle–particle particle-mesh
journal, March 2012

  • Brown, W. Michael; Kohlmeyer, Axel; Plimpton, Steven J.
  • Computer Physics Communications, Vol. 183, Issue 3
  • DOI: 10.1016/j.cpc.2011.10.012

Statistical mechanics of isomerization dynamics in liquids and the transition state approximation
journal, January 1978

  • Chandler, David
  • The Journal of Chemical Physics, Vol. 68, Issue 6
  • DOI: 10.1063/1.436049

Works referencing / citing this record:

Porous organic cages: soluble, modular and molecular pores
journal, July 2016


Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels
journal, June 2019


Molecular simulation of capillary phase transitions in flexible porous materials
journal, March 2018

  • Shen, Vincent K.; Siderius, Daniel W.; Mahynski, Nathan A.
  • The Journal of Chemical Physics, Vol. 148, Issue 12
  • DOI: 10.1063/1.5022171

Adsorption and sequential thermal release of F 2 , Cl 2 , and Br 2 molecules by a porous organic cage material (CC3‐R): Molecular dynamics and grand‐canonical Monte Carlo simulations
journal, December 2019

  • Ghalami, Zahra; Ghoulipour, Vanik; Khanchi, Ali Reza
  • Journal of Computational Chemistry, Vol. 41, Issue 9
  • DOI: 10.1002/jcc.26142

Chiral Separation via Molecular Sieving: A Computational Screening of Suitable Functionalizations for Nanoporous Graphene
journal, June 2018

  • Fruehwirth, Samuel M.; Meyer, Ralf; Hauser, Andreas W.
  • ChemPhysChem, Vol. 19, Issue 18
  • DOI: 10.1002/cphc.201800413

Computational screening for nested organic cage complexes
journal, January 2020

  • Berardo, Enrico; Greenaway, Rebecca L.; Miklitz, Marcin
  • Molecular Systems Design & Engineering, Vol. 5, Issue 1
  • DOI: 10.1039/c9me00085b

Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages
journal, June 2017


Eigencages: Learning a Latent Space of Porous Cage Molecules
journal, December 2018


Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels
journal, June 2019