DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction

Abstract

Under ambient conditions, copper with oxygen near the surface displays strengthened CO2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity of crystalline Cu.

Authors:
 [1];  [2];  [1];  [3]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Zhejiang Univ., Hangzhou (China)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1457147
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 28; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Fields, Meredith, Hong, Xin, Norskov, Jens K., and Chan, Karen. The Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction. United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.8b04983.
Fields, Meredith, Hong, Xin, Norskov, Jens K., & Chan, Karen. The Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction. United States. https://doi.org/10.1021/acs.jpcc.8b04983
Fields, Meredith, Hong, Xin, Norskov, Jens K., and Chan, Karen. Tue . "The Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction". United States. https://doi.org/10.1021/acs.jpcc.8b04983. https://www.osti.gov/servlets/purl/1457147.
@article{osti_1457147,
title = {The Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction},
author = {Fields, Meredith and Hong, Xin and Norskov, Jens K. and Chan, Karen},
abstractNote = {Under ambient conditions, copper with oxygen near the surface displays strengthened CO2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity of crystalline Cu.},
doi = {10.1021/acs.jpcc.8b04983},
journal = {Journal of Physical Chemistry. C},
number = 28,
volume = 122,
place = {United States},
year = {Tue Jun 12 00:00:00 EDT 2018},
month = {Tue Jun 12 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 64 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Oxygen Free Energies in a Cu (111) slab.

Save / Share:

Works referenced in this record:

Electrochemical CO2 Reduction on Metal Electrodes
book, January 2008


Electrochemical Reduction of  CO 2 at Intentionally Oxidized Copper Electrodes
journal, November 1991

  • Frese, Karl W.
  • Journal of The Electrochemical Society, Vol. 138, Issue 11
  • DOI: 10.1149/1.2085411

Electroreduction of CO2 on differently prepared copper electrodes
journal, January 1992


Electrochemical reduction of carbon dioxide on flat metallic cathodes
journal, January 1997

  • Jitaru, M.; Lowy, D. A.; Toma, M.
  • Journal of Applied Electrochemistry, Vol. 27, Issue 8, p. 875-889
  • DOI: 10.1023/A:1018441316386

Electrochemical reduction of CO2 at copper electrodes and its relationship to the metal surface characteristics
journal, January 2002

  • Momose, Y.; Sato, K.; Ohno, O.
  • Surface and Interface Analysis, Vol. 34, Issue 1
  • DOI: 10.1002/sia.1372

Reduction of CO2 to Ethylene at Three-Phase Interface Effects of Electrode Substrate and Catalytic Coating
journal, January 2005

  • Ogura, K.; Oohara, R.; Kudo, Y.
  • Journal of The Electrochemical Society, Vol. 152, Issue 12, p. D213-D219
  • DOI: 10.1149/1.2073115

Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides
journal, April 2004


Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces
journal, January 2011

  • Le, M.; Ren, M.; Zhang, Z.
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3561636

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

Particle Size Effects in the Catalytic Electroreduction of CO 2 on Cu Nanoparticles
journal, May 2014

  • Reske, Rulle; Mistry, Hemma; Behafarid, Farzad
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja500328k

High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts
journal, February 2015

  • Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
  • Angewandte Chemie International Edition, Vol. 54, Issue 17
  • DOI: 10.1002/anie.201412214

Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n -Propanol
journal, December 2015

  • Ren, Dan; Wong, Nian Tee; Handoko, Albertus Denny
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 1
  • DOI: 10.1021/acs.jpclett.5b02554

Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity
journal, February 2016

  • Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
  • ChemCatChem, Vol. 8, Issue 6
  • DOI: 10.1002/cctc.201501189

Electrocatalytic Production of C3-C4 Compounds by Conversion of CO 2 on a Chloride-Induced Bi-Phasic Cu 2 O-Cu Catalyst
journal, October 2015

  • Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201505730

Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene
journal, June 2016

  • Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12123

Adsorption–desorption of CO2 on different type of copper oxides surfaces: Physical and chemical attractions studies
journal, September 2013

  • Isahak, Wan Nor Roslam Wan; Ramli, Zatil Amali Che; Ismail, Mohamad Wafiuddin
  • Journal of CO2 Utilization, Vol. 2
  • DOI: 10.1016/j.jcou.2013.06.002

CO Adsorption on the “29” Cu x O/Cu(111) Surface: An Integrated DFT, STM, and TPD Study
journal, October 2016

  • Hensley, Alyssa J. R.; Therrien, Andrew J.; Zhang, Renqin
  • The Journal of Physical Chemistry C, Vol. 120, Issue 44
  • DOI: 10.1021/acs.jpcc.6b07670

Subsurface oxide plays a critical role in CO 2 activation by Cu(111) surfaces to form chemisorbed CO 2 , the first step in reduction of CO 2
journal, June 2017

  • Favaro, Marco; Xiao, Hai; Cheng, Tao
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1701405114

CO-CO coupling on Cu facets: Coverage, strain and field effects
journal, December 2016


Revised Pourbaix Diagrams for Copper at 25 to 300°C
journal, January 1997

  • Beverskog, B.
  • Journal of The Electrochemical Society, Vol. 144, Issue 10
  • DOI: 10.1149/1.1838036

Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
journal, December 2016

  • Eilert, André; Cavalca, Filippo; Roberts, F. Sloan
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 1
  • DOI: 10.1021/acs.jpclett.6b02273

Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory
journal, October 2004


Cu metal embedded in oxidized matrix catalyst to promote CO 2 activation and CO dimerization for electrochemical reduction of CO 2
journal, June 2017

  • Xiao, Hai; Goddard, William A.; Cheng, Tao
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1702405114

Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO 2 Reduction
journal, October 2017

  • Liu, Chang; Lourenço, Maicon P.; Hedström, Svante
  • The Journal of Physical Chemistry C, Vol. 121, Issue 45
  • DOI: 10.1021/acs.jpcc.7b08269

Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
journal, January 2018

  • Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 3
  • DOI: 10.1021/acs.jpclett.7b03180

Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols
journal, April 2017


CO 2 Reduction on Cu at Low Overpotentials with Surface-Enhanced in Situ Spectroscopy
journal, July 2016

  • Heyes, Jeffrey; Dunwell, Marco; Xu, Bingjun
  • The Journal of Physical Chemistry C, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpcc.6b03065

Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions
journal, January 2008

  • Platzman, Ilia; Brener, Reuven; Haick, Hossam
  • The Journal of Physical Chemistry C, Vol. 112, Issue 4
  • DOI: 10.1021/jp076981k

An X-ray photo-electron spectroscopic investigation of the air-formed film on copper
journal, October 1992


Continuous-flow electroreduction of carbon dioxide
journal, September 2017


Electrochemical Reduction of CO at a Copper Electrode
journal, September 1997

  • Hori, Yoshio; Takahashi, Ryutaro; Yoshinami, Yuzuru
  • The Journal of Physical Chemistry B, Vol. 101, Issue 36
  • DOI: 10.1021/jp970284i

Electrochemical CO 2 reduction on Cu 2 O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons
journal, January 2014

  • Kas, Recep; Kortlever, Ruud; Milbrat, Alexander
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 24
  • DOI: 10.1039/C4CP01520G

Morphology-controlled CuO nanoparticles for electroreduction of CO 2 to ethanol
journal, January 2014

  • Chi, Dinghui; Yang, Hengpan; Du, Yanfang
  • RSC Adv., Vol. 4, Issue 70
  • DOI: 10.1039/C4RA05415F

Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO 2 to CO
journal, January 2016

  • Zhao, Yong; Wang, Caiyun; Wallace, Gordon G.
  • Journal of Materials Chemistry A, Vol. 4, Issue 27
  • DOI: 10.1039/C6TA04155H

In situ spectroscopic monitoring of CO 2 reduction at copper oxide electrode
journal, January 2017

  • Wang, Liying; Gupta, Kalyani; Goodall, Josephine B. M.
  • Faraday Discussions, Vol. 197
  • DOI: 10.1039/C6FD00183A

Morphology Matters: Tuning the Product Distribution of CO 2 Electroreduction on Oxide-Derived Cu Foam Catalysts
journal, May 2016


CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
journal, April 2012

  • Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17, p. 7231-7234
  • DOI: 10.1021/ja3010978

Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu 2 O-Derived Copper Catalyst and Palladium(II) Chloride
journal, November 2015

  • Chen, Chung Shou; Wan, Jane Hui; Yeo, Boon Siang
  • The Journal of Physical Chemistry C, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpcc.5b09144

Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts
journal, July 2015

  • Verdaguer-Casadevall, Arnau; Li, Christina W.; Johansson, Tobias P.
  • Journal of the American Chemical Society, Vol. 137, Issue 31
  • DOI: 10.1021/jacs.5b06227

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
journal, June 2017

  • Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter
  • The Journal of Physical Chemistry C, Vol. 121, Issue 26
  • DOI: 10.1021/acs.jpcc.7b03673

The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction
journal, January 2012

  • Tang, Wei; Peterson, Andrew A.; Varela, Ana Sofia
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 1
  • DOI: 10.1039/C1CP22700A

Investigating the Role of Copper Oxide in Electrochemical CO 2 Reduction in Real Time
journal, February 2018

  • Mandal, Lily; Yang, Ke R.; Motapothula, Mallikarjuna Rao
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 10
  • DOI: 10.1021/acsami.7b15418

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

An object-oriented scripting interface to a legacy electronic structure code
journal, January 2002

  • Bahn, S. R.; Jacobsen, K. W.
  • Computing in Science & Engineering, Vol. 4, Issue 3
  • DOI: 10.1109/5992.998641

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
journal, April 1990


Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation
journal, June 2012


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Dipole correction for surface supercell calculations
journal, May 1999


Fundamental Concepts in Heterogeneous Catalysis
book, January 2014

  • Nørskov, Jens K.; Studt, Felix; Abild-Pedersen, Frank
  • John Wiley & Sons, Inc.
  • DOI: 10.1002/9781118892114

(Invited) Optimizing Electrocatalyst Selectivity for CO2 Reduction over H2 Evolution
journal, April 2015


New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Controlling H + vs CO 2 Reduction Selectivity on Pb Electrodes
journal, November 2014

  • Lee, Chang Hoon; Kanan, Matthew W.
  • ACS Catalysis, Vol. 5, Issue 1
  • DOI: 10.1021/cs5017672

Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals
journal, April 2013

  • Schouten, Klaas Jan P.; Pérez Gallent, Elena; Koper, Marc T. M.
  • ACS Catalysis, Vol. 3, Issue 6
  • DOI: 10.1021/cs4002404

Works referencing / citing this record:

Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
journal, September 2019

  • Birdja, Yuvraj Y.; Pérez-Gallent, Elena; Figueiredo, Marta C.
  • Nature Energy, Vol. 4, Issue 9
  • DOI: 10.1038/s41560-019-0450-y

Electrochemical CO 2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design
journal, December 2018

  • Kibria, Md Golam; Edwards, Jonathan P.; Gabardo, Christine M.
  • Advanced Materials, Vol. 31, Issue 31
  • DOI: 10.1002/adma.201807166

Paramelaconite‐Enriched Copper‐Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction
journal, June 2019

  • Martić, Nemanja; Reller, Christian; Macauley, Chandra
  • Advanced Energy Materials, Vol. 9, Issue 29
  • DOI: 10.1002/aenm.201901228

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.