DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations

Abstract

As star-forming clouds collapse, the gas within them fragments to ever-smaller masses. Naively one might expect this process to continue down to the smallest mass that is able to radiate away its binding energy on a dynamical time-scale, the opacity limit for fragmentation, at ~0.01M⊙. However, the observed peak of the initial mass function (IMF) lies a factor of 20-30 higher in mass, suggesting that some other mechanism halts fragmentation before the opacity limit is reached. Here, we analyse radiation-magnetohydrodynamic simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, ~0.01M⊙, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, and instead is likely to accrete. This mechanism explains whymore » ~0.01M⊙ objects are rare: unless an outside agent intervenes (e.g. a shock strips away the gas around them), they will grow by accreting the warmed gas around them. In contrast, by the time stars grow to masses of ~0.2M⊙, the mass of heated gas is only tens of percent of the central star mass, too small to alter its final mass by a large factor. This naturally explains why the IMF peak is at ~0.2M⊙.« less

Authors:
 [1];  [2];  [3];  [4]
  1. Australian National Univ., Canberra, ACT (Australia). Research School of Astronomy and Astrophysics
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Astronomy
  4. Univ. of California, Berkeley, CA (United States). Dept. of Astronomy and Dept. of Physics
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); Australian Research Council (ARC); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1456926
Alternate Identifier(s):
OSTI ID: 1863668
Report Number(s):
LLNL-JRNL-734793
Journal ID: ISSN 0035-8711; ark:/13030/qt80c4v99d; TRN: US1901262
Grant/Contract Number:  
AC02-05CH11231; DP160100695; NNX-14AB52G; NNX-13AB84G; AST-1211729; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 460; Journal Issue: 3; Related Information: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; radiative transfer; stars: formation; stars: luminosity function; mass function; ISM: clouds

Citation Formats

Krumholz, Mark R., Myers, Andrew T., Klein, Richard I., and McKee, Christopher F. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations. United States: N. p., 2016. Web. doi:10.1093/mnras/stw1236.
Krumholz, Mark R., Myers, Andrew T., Klein, Richard I., & McKee, Christopher F. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations. United States. https://doi.org/10.1093/mnras/stw1236
Krumholz, Mark R., Myers, Andrew T., Klein, Richard I., and McKee, Christopher F. Tue . "What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations". United States. https://doi.org/10.1093/mnras/stw1236. https://www.osti.gov/servlets/purl/1456926.
@article{osti_1456926,
title = {What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations},
author = {Krumholz, Mark R. and Myers, Andrew T. and Klein, Richard I. and McKee, Christopher F.},
abstractNote = {As star-forming clouds collapse, the gas within them fragments to ever-smaller masses. Naively one might expect this process to continue down to the smallest mass that is able to radiate away its binding energy on a dynamical time-scale, the opacity limit for fragmentation, at ~0.01M⊙. However, the observed peak of the initial mass function (IMF) lies a factor of 20-30 higher in mass, suggesting that some other mechanism halts fragmentation before the opacity limit is reached. Here, we analyse radiation-magnetohydrodynamic simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, ~0.01M⊙, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, and instead is likely to accrete. This mechanism explains why ~0.01M⊙ objects are rare: unless an outside agent intervenes (e.g. a shock strips away the gas around them), they will grow by accreting the warmed gas around them. In contrast, by the time stars grow to masses of ~0.2M⊙, the mass of heated gas is only tens of percent of the central star mass, too small to alter its final mass by a large factor. This naturally explains why the IMF peak is at ~0.2M⊙.},
doi = {10.1093/mnras/stw1236},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 460,
place = {United States},
year = {Tue May 24 00:00:00 EDT 2016},
month = {Tue May 24 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The importance of radiative feedback for the stellar initial mass function
journal, February 2009


Massive star formation: nurture, not nature
journal, April 2004

  • Bonnell, Ian A.; Vine, Stephen G.; Bate, Matthew R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 349, Issue 2
  • DOI: 10.1111/j.1365-2966.2004.07543.x

The Stellar Initial Mass Function from Turbulent Fragmentation
journal, September 2002

  • Padoan, Paolo; Nordlund, Ake
  • The Astrophysical Journal, Vol. 576, Issue 2
  • DOI: 10.1086/341790

The impact of magnetic fields on the IMF in star-forming clouds near a supermassive black hole
journal, September 2012


Systematic variation of the stellar initial mass function in early-type galaxies
journal, April 2012

  • Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine
  • Nature, Vol. 484, Issue 7395
  • DOI: 10.1038/nature10972

Magnetic flux Expulsion in star Formation
journal, November 2011


On the massive stellar population of the super star cluster Westerlund 1
journal, April 2005


Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition
journal, November 2011

  • Commerçon, Benoît; Hennebelle, Patrick; Henning, Thomas
  • The Astrophysical Journal, Vol. 742, Issue 1
  • DOI: 10.1088/2041-8205/742/1/L9

Magnetic field amplification during gravitational collapse - influence of turbulence, rotation and gravitational compression: Magnetic fields in turbulent collapsing clouds
journal, May 2012

  • Sur, Sharanya; Federrath, Christoph; Schleicher, Dominik R. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 423, Issue 4
  • DOI: 10.1111/j.1365-2966.2012.21100.x

Radiation Feedback and Fragmentation in Massive Protostellar Cores
journal, March 2006

  • Krumholz, Mark R.
  • The Astrophysical Journal, Vol. 641, Issue 1
  • DOI: 10.1086/503771

The stellar mass spectrum from non-isothermal gravoturbulent fragmentation
journal, April 2005


A general theory of turbulent fragmentation
journal, February 2013

  • Hopkins, Philip F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 430, Issue 3
  • DOI: 10.1093/mnras/sts704

Variations in the stellar CMF and IMF: from bottom to top
journal, June 2013

  • Hopkins, Philip F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 433, Issue 1
  • DOI: 10.1093/mnras/stt713

Gas cooling by dust during dynamical fragmentation
journal, September 1998


An Initial mass Function for Individual Stars in Galactic Disks. i. Constraining the Shape of the Initial mass Function
journal, December 2010

  • Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.
  • The Astrophysical Journal, Vol. 726, Issue 1
  • DOI: 10.1088/0004-637X/726/1/27

Reconnection in a Weakly Stochastic Field
journal, June 1999

  • Lazarian, A.; Vishniac, Ethan T.
  • The Astrophysical Journal, Vol. 517, Issue 2
  • DOI: 10.1086/307233

Towards understanding the stellar initial mass function
journal, June 1992


Dynamics of Self-Gravitating Gaseous Spheres--III: Analytical Results in the Free-fall of Isothermal Cases
journal, June 1969


HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

The simultaneous formation of massive stars and stellar clusters: The formation of massive stars and clusters
journal, December 2009


Equilibria and evolutions of magnetized, rotating, isothermal clouds. II - The extreme case: Nonrotating clouds
journal, December 1988

  • Tomisaka, Kohji; Ikeuchi, Satoru; Nakamura, Takashi
  • The Astrophysical Journal, Vol. 335
  • DOI: 10.1086/166923

Collapse-Driven Outflow in Star-Forming Molecular Cores
journal, August 1998

  • Tomisaka, Kohji
  • The Astrophysical Journal, Vol. 502, Issue 2
  • DOI: 10.1086/311504

The Runts of the Litter: why Planets Formed Through Gravitational Instability can only be Failed Binary Stars
journal, January 2010

  • Kratter, Kaitlin M.; Murray-Clay, Ruth A.; Youdin, Andrew N.
  • The Astrophysical Journal, Vol. 710, Issue 2
  • DOI: 10.1088/0004-637X/710/2/1375

Magnetized interstellar molecular clouds – I. Comparison between simulations and Zeeman observations
journal, July 2015

  • Li, Pak Shing; McKee, Christopher F.; Klein, Richard I.
  • Monthly Notices of the Royal Astronomical Society, Vol. 452, Issue 3
  • DOI: 10.1093/mnras/stv1437

Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores
journal, March 2011


Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation
journal, November 2010

  • Peters, Thomas; Klessen, Ralf S.; Low, Mordecai-Mark Mac
  • The Astrophysical Journal, Vol. 725, Issue 1
  • DOI: 10.1088/0004-637X/725/1/134

The necessity of feedback physics in setting the peak of the initial mass function
journal, February 2016

  • Guszejnov, Dávid; Krumholz, Mark R.; Hopkins, Philip F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 1
  • DOI: 10.1093/mnras/stw315

Stability of collapsing isothermal spheres
journal, December 1988

  • Silk, Joseph; Suto, Yasushi
  • The Astrophysical Journal, Vol. 335
  • DOI: 10.1086/166927

Lowering the Characteristic mass of Cluster Stars by Magnetic Fields and Outflow Feedback
journal, August 2010


The Interplay of Magnetic Fields, Fragmentation, and Ionization Feedback in High-Mass star Formation
journal, February 2011


Radiation hydrodynamics with adaptive mesh refinement and application to prestellar core collapse: I. Methods
journal, March 2011


On the Origin of Stellar Masses
journal, November 2011


Diffusion of Magnetic Field and Removal of Magnetic flux from Clouds via Turbulent Reconnection
journal, April 2010

  • Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.
  • The Astrophysical Journal, Vol. 714, Issue 1
  • DOI: 10.1088/0004-637X/714/1/442

Feedback Effects on Low-Mass star Formation
journal, February 2012

  • Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 747, Issue 1
  • DOI: 10.1088/0004-637X/747/1/22

Opacity-Limited Hierarchical Fragmentation and the Masses of Protostars
journal, September 1976


The Minimum Jeans Mass or When Fragmentation Must Stop
journal, August 1976

  • Low, C.; Lynden-Bell, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 176, Issue 2
  • DOI: 10.1093/mnras/176.2.367

Analytical Theory for the Initial mass Function. ii. Properties of the flow
journal, August 2009


Note on the collapse of magnetic interstellar clouds
journal, November 1976

  • Mouschovias, T. Ch.; Spitzer, L. , Jr.
  • The Astrophysical Journal, Vol. 210
  • DOI: 10.1086/154835

yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA
journal, December 2010

  • Turk, Matthew J.; Smith, Britton D.; Oishi, Jeffrey S.
  • The Astrophysical Journal Supplement Series, Vol. 192, Issue 1
  • DOI: 10.1088/0067-0049/192/1/9

The photoevaporation of interstellar clouds. II - Equilibrium cometary clouds
journal, May 1990

  • Bertoldi, Frank; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 354
  • DOI: 10.1086/168713

Dense core Formation in Supersonic Turbulent Converging Flows
journal, February 2011


Numerical Calculations of the Dynamics of a Collapsing Proto-Star*
journal, August 1969


Thermal physics, cloud geometry and the stellar initial mass function
journal, May 2005


Radiation-Hydrodynamic Simulations of the Formation of Orion-Like star Clusters. i. Implications for the Origin of the Initial mass Function
journal, September 2011

  • Krumholz, Mark R.; Klein, Richard I.; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 740, Issue 2
  • DOI: 10.1088/0004-637X/740/2/74

Star Formation in Self-Gravitating Turbulent Fluids
journal, April 2015


The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds
journal, February 2005


Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present‐Day Star Formation
journal, June 2007

  • Padoan, Paolo; Nordlund, Ake; Kritsuk, Alexei G.
  • The Astrophysical Journal, Vol. 661, Issue 2
  • DOI: 10.1086/516623

The Formation of Massive Stars from Turbulent Cores
journal, March 2003

  • McKee, Christopher F.; Tan, Jonathan C.
  • The Astrophysical Journal, Vol. 585, Issue 2
  • DOI: 10.1086/346149

Analytical Theory for the Initial mass Function. iii. time Dependence and star Formation rate
journal, June 2013


Theory of Star Formation
journal, September 2007


The Protostellar Luminosity Function
journal, July 2011


Mapping the core mass function to the initial mass function
journal, May 2015

  • Guszejnov, Dávid; Hopkins, Philip F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 450, Issue 4
  • DOI: 10.1093/mnras/stv872

Metallicity and the Universality of the Initial mass Function
journal, June 2011

  • Myers, Andrew T.; Krumholz, Mark R.; Klein, Richard I.
  • The Astrophysical Journal, Vol. 735, Issue 1
  • DOI: 10.1088/0004-637X/735/1/49

Evidence for a mild Steepening and Bottom-Heavy Initial mass Function in Massive Galaxies from Sodium and Titanium-Oxide Indicators
journal, June 2012


Sub-AlfvÉNic Non-Ideal mhd Turbulence Simulations with Ambipolar Diffusion. ii. Comparison with Observation, Clump Properties, and Scaling to Physical Units
journal, August 2010


A CS J  = 5 → 4 Mapping Survey Toward High‐Mass Star‐forming Cores Associated with Water Masers
journal, December 2003

  • Shirley, Yancy L.; Evans II, Neal J.; Young, Kaisa E.
  • The Astrophysical Journal Supplement Series, Vol. 149, Issue 2
  • DOI: 10.1086/379147

The “Mysterious” Origin of Brown Dwarfs
journal, December 2004

  • Padoan, Paolo; Nordlund, Ake
  • The Astrophysical Journal, Vol. 617, Issue 1
  • DOI: 10.1086/345413

Boyle's Law and Gravitational Instability
journal, June 1956


Galactic Stellar and Substellar Initial Mass Function
journal, July 2003

  • Chabrier, Gilles
  • Publications of the Astronomical Society of the Pacific, Vol. 115, Issue 809
  • DOI: 10.1086/376392

Multipressure Polytropes as Models for the Structure and Stability of Molecular Clouds. I. Theory
journal, September 1999

  • McKee, Christopher F.; Holliman II, John H.
  • The Astrophysical Journal, Vol. 522, Issue 1
  • DOI: 10.1086/307613

The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems
journal, January 2002


Radiation-Hydrodynamic Simulations of Massive star Formation with Protostellar Outflows
journal, October 2011

  • Cunningham, Andrew J.; Klein, Richard I.; Krumholz, Mark R.
  • The Astrophysical Journal, Vol. 740, Issue 2
  • DOI: 10.1088/0004-637X/740/2/107

The stellar initial mass function, core mass function and the last-crossing distribution
journal, May 2012


Embedding Lagrangian Sink Particles in Eulerian Grids
journal, August 2004

  • Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.
  • The Astrophysical Journal, Vol. 611, Issue 1
  • DOI: 10.1086/421935

The Fragmentation of Magnetized, Massive Star-Forming Cores with Radiative Feedback
journal, March 2013

  • Myers, Andrew T.; McKee, Christopher F.; Cunningham, Andrew J.
  • The Astrophysical Journal, Vol. 766, Issue 2
  • DOI: 10.1088/0004-637X/766/2/97

Coherence in Dense Cores. II. The Transition to Coherence
journal, September 1998

  • Goodman, Alyssa A.; Barranco, Joseph A.; Wilner, David J.
  • The Astrophysical Journal, Vol. 504, Issue 1
  • DOI: 10.1086/306045

A Universal Stellar Initial Mass Function? A Critical Look at Variations
journal, August 2010


A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics
journal, January 1998

  • Hillenbrand, Lynne A.; Hartmann, Lee W.
  • The Astrophysical Journal, Vol. 492, Issue 2
  • DOI: 10.1086/305076

Efficiencies of Low‐Mass Star and Star Cluster Formation
journal, December 2000

  • Matzner, Christopher D.; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 545, Issue 1
  • DOI: 10.1086/317785

Star cluster formation in turbulent, magnetized dense clumps with radiative and outflow feedback
journal, February 2014

  • Myers, Andrew T.; Klein, Richard I.; Krumholz, Mark R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 4
  • DOI: 10.1093/mnras/stu190

The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations
journal, June 2007


The Jeans mass and the origin of the knee in the IMF
journal, April 2006


Magnetic processes in a collapsing dense core: II. Fragmentation. Is there a fragmentation crisis?
journal, October 2007


The Effects of Radiative Transfer on Low-Mass star Formation
journal, August 2009

  • Offner, Stella S. R.; Klein, Richard I.; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 703, Issue 1
  • DOI: 10.1088/0004-637X/703/1/131

Competitive accretion in embedded stellar clusters
journal, May 2001


A substantial population of low-mass stars in luminous elliptical galaxies
journal, December 2010


The Protostellar mass Function
journal, May 2010


Radiation-Hydrodynamic Simulations of the Formation of Orion-Like star Clusters. ii. the Initial mass Function from Winds, Turbulence, and Radiation
journal, July 2012

  • Krumholz, Mark R.; Klein, Richard I.; McKee, Christopher F.
  • The Astrophysical Journal, Vol. 754, Issue 1
  • DOI: 10.1088/0004-637X/754/1/71

The statistical properties of stars and their dependence on metallicity: the effects of opacity
journal, June 2014

  • Bate, Matthew R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 1
  • DOI: 10.1093/mnras/stu795

Prediction of the Protostellar mass Spectrum in the Orion Near-Infrared Cluster
journal, October 1982


Analytical Theory for the Initial Mass Function: CO Clumps and Prestellar Cores
journal, September 2008

  • Hennebelle, Patrick; Chabrier, Gilles
  • The Astrophysical Journal, Vol. 684, Issue 1
  • DOI: 10.1086/589916

A Radiation Hydrodynamic Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar
journal, March 2000

  • Masunaga, Hirohiko; Inutsuka, Shu‐ichiro
  • The Astrophysical Journal, Vol. 531, Issue 1
  • DOI: 10.1086/308439

Dynamical Versus Stellar Masses in Compact Early-Type Galaxies: Further Evidence for Systematic Variation in the Stellar Initial mass Function
journal, October 2013

  • Conroy, Charlie; Dutton, Aaron A.; Graves, Genevieve J.
  • The Astrophysical Journal, Vol. 776, Issue 2
  • DOI: 10.1088/2041-8205/776/2/L26

Accretion and the stellar mass spectrum in small clusters
journal, February 1997

  • Bonnell, I. A.; Bate, M. R.; Clarke, C. J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 285, Issue 1
  • DOI: 10.1093/mnras/285.1.201

The X-Shooter Lens Survey – II. Sample presentation and spatially-resolved kinematics
journal, July 2015

  • Spiniello, C.; Koopmans, L. V. E.; Trager, S. C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 452, Issue 3
  • DOI: 10.1093/mnras/stv1490

Accretion in stellar clusters and the initial mass function
journal, June 2001


The photoevaporation of interstellar clouds. I - Radiation-driven implosion
journal, November 1989

  • Bertoldi, Frank
  • The Astrophysical Journal, Vol. 346
  • DOI: 10.1086/168055

Inefficient star formation: the combined effects of magnetic fields and radiative feedback
journal, September 2009


Protostellar Accretion Flows Destabilized by Magnetic flux Redistribution
journal, September 2012


Direct Observation of a Sharp Transition to Coherence in Dense Cores
journal, March 2010


Works referencing / citing this record:

The Dawes Review 8: Measuring the Stellar Initial Mass Function
journal, January 2018

  • Hopkins, A. M.
  • Publications of the Astronomical Society of Australia, Vol. 35
  • DOI: 10.1017/pasa.2018.29

A deep staring campaign in the σ Orionis cluster : Variability in substellar members⋆⋆⋆
journal, December 2017


Mixing of metals during star cluster formation: statistics and implications for chemical tagging
journal, October 2018

  • Armillotta, Lucia; Krumholz, Mark R.; Fujimoto, Yusuke
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 4
  • DOI: 10.1093/mnras/sty2625

The statistical properties of stars and their dependence on metallicity
journal, January 2019

  • Bate, Matthew R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 2
  • DOI: 10.1093/mnras/stz103

IMF radial gradients in most massive early-type galaxies
journal, August 2019

  • La Barbera, F.; Vazdekis, A.; Ferreras, I.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 3
  • DOI: 10.1093/mnras/stz2192

Simulating star clusters across cosmic time – I. Initial mass function, star formation rates, and efficiencies
journal, August 2019

  • He, Chong-Chong; Ricotti, Massimo; Geen, Sam
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
  • DOI: 10.1093/mnras/stz2239

The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function
journal, February 2019

  • Krumholz, Mark R.; Federrath, Christoph
  • Frontiers in Astronomy and Space Sciences, Vol. 6
  • DOI: 10.3389/fspas.2019.00007

The Stellar IMF from Isothermal MHD Turbulence
journal, February 2018

  • Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke
  • The Astrophysical Journal, Vol. 854, Issue 1
  • DOI: 10.3847/1538-4357/aaa432

The Unusual Initial Mass Function of the Arches Cluster
journal, January 2019

  • Hosek, Matthew W.; Lu, Jessica R.; Anderson, Jay
  • The Astrophysical Journal, Vol. 870, Issue 1
  • DOI: 10.3847/1538-4357/aaef90

How First Hydrostatic Cores, Tidal Forces, and Gravoturbulent Fluctuations Set the Characteristic Mass of Stars
journal, September 2019

  • Hennebelle, Patrick; Lee, Yueh-Ning; Chabrier, Gilles
  • The Astrophysical Journal, Vol. 883, Issue 2
  • DOI: 10.3847/1538-4357/ab3d46

The Unusual Initial Mass Function of the Arches Cluster
text, January 2018