DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The geospatial and economic viability of CO2 storage in hydrocarbon depleted fractured shale formations

Abstract

Hydrocarbon depleted fractured shale (HDFS) formations could be attractive for geologic carbon dioxide (CO2) storage. Shale formations may be able to leverage existing infrastructure, have larger capacities, and be more secure than saline aquifers. We compared regional storage capacities and integrated CO2 capture, transport, and storage systems that use HDFS with those that use saline aquifers in a region of the United States with extensive shale development that overlies prospective saline aquifers. We estimated HDFS storage capacities with a production-based method and costs by adapting methods developed for saline aquifers and found that HDFS formations in this region might be able to store with less cost an estimated ~14× more CO2 on average than saline aquifers at the same location. The potential for smaller Areas of Review and less investment in infrastructure accounted for up to 84% of the difference in estimated storage costs. We implemented an engineering-economic geospatial optimization model to determine and compare the viability of storage capacity for these two storage resources. Across the state-specific and regional scenarios we investigated, our results for this region suggest that integrated CCS systems using HDFS could be more centralized, require less pipelines, prioritize different routes for trunklines, and be 6.4–6.8%more » ($5-10/tCO2) cheaper than systems using saline aquifers. In conclusion, overall, CO2 storage in HDFS could be technically and economically attractive and may lower barriers to large scale CO2 storage if they can be permitted.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [3];  [3]
  1. The Ohio State Univ., Columbus, OH (United States). Dept of Civil, Environmental, and Geodetic Engineering; The Ohio State Univ., Columbus, OH (United States). John Glenn College of Public Affairs
  2. The Ohio State Univ., Columbus, OH (United States). Dept of Civil, Environmental, and Geodetic Engineering
  3. Univ. of Virginia, Charlottesville, VA (United States). Dept. of Civil and Environmental Engineering
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1454996
Report Number(s):
LA-UR-17-24674
Journal ID: ISSN 1750-5836
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
International Journal of Greenhouse Gas Control
Additional Journal Information:
Journal Volume: 75; Journal Issue: C; Journal ID: ISSN 1750-5836
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 42 ENGINEERING; Earth Sciences

Citation Formats

Bielicki, Jeffrey M., Langenfeld, Julie K., Tao, Zhiyuan, Middleton, Richard S., Menefee, Anne H., and Clarens, Andres F. The geospatial and economic viability of CO2 storage in hydrocarbon depleted fractured shale formations. United States: N. p., 2018. Web. doi:10.1016/j.ijggc.2018.05.015.
Bielicki, Jeffrey M., Langenfeld, Julie K., Tao, Zhiyuan, Middleton, Richard S., Menefee, Anne H., & Clarens, Andres F. The geospatial and economic viability of CO2 storage in hydrocarbon depleted fractured shale formations. United States. https://doi.org/10.1016/j.ijggc.2018.05.015
Bielicki, Jeffrey M., Langenfeld, Julie K., Tao, Zhiyuan, Middleton, Richard S., Menefee, Anne H., and Clarens, Andres F. Sat . "The geospatial and economic viability of CO2 storage in hydrocarbon depleted fractured shale formations". United States. https://doi.org/10.1016/j.ijggc.2018.05.015. https://www.osti.gov/servlets/purl/1454996.
@article{osti_1454996,
title = {The geospatial and economic viability of CO2 storage in hydrocarbon depleted fractured shale formations},
author = {Bielicki, Jeffrey M. and Langenfeld, Julie K. and Tao, Zhiyuan and Middleton, Richard S. and Menefee, Anne H. and Clarens, Andres F.},
abstractNote = {Hydrocarbon depleted fractured shale (HDFS) formations could be attractive for geologic carbon dioxide (CO2) storage. Shale formations may be able to leverage existing infrastructure, have larger capacities, and be more secure than saline aquifers. We compared regional storage capacities and integrated CO2 capture, transport, and storage systems that use HDFS with those that use saline aquifers in a region of the United States with extensive shale development that overlies prospective saline aquifers. We estimated HDFS storage capacities with a production-based method and costs by adapting methods developed for saline aquifers and found that HDFS formations in this region might be able to store with less cost an estimated ~14× more CO2 on average than saline aquifers at the same location. The potential for smaller Areas of Review and less investment in infrastructure accounted for up to 84% of the difference in estimated storage costs. We implemented an engineering-economic geospatial optimization model to determine and compare the viability of storage capacity for these two storage resources. Across the state-specific and regional scenarios we investigated, our results for this region suggest that integrated CCS systems using HDFS could be more centralized, require less pipelines, prioritize different routes for trunklines, and be 6.4–6.8% ($5-10/tCO2) cheaper than systems using saline aquifers. In conclusion, overall, CO2 storage in HDFS could be technically and economically attractive and may lower barriers to large scale CO2 storage if they can be permitted.},
doi = {10.1016/j.ijggc.2018.05.015},
journal = {International Journal of Greenhouse Gas Control},
number = C,
volume = 75,
place = {United States},
year = {Sat May 26 00:00:00 EDT 2018},
month = {Sat May 26 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Estimated CO2 Storage Capacities in (a) Shale Sequestration Hubs and (b) Saline Aquifers and the Associated Hubs. The size of the circle indicates the estimated CO2 storage capacity associated with the hub, with individual cost and capacity estimates provided in Section 2 of the Supporting Information. The estimatedmore » CO2 storage capacity in saline aquifers at 10 x 10 km resolution is shown on a scale from yellow to brown (NETL, 2015).« less

Save / Share:

Works referenced in this record:

Developments in public communications on CCS
journal, September 2015


CO2 storage capacity estimation: Methodology and gaps
journal, October 2007

  • Bachu, Stefan; Bonijoly, Didier; Bradshaw, John
  • International Journal of Greenhouse Gas Control, Vol. 1, Issue 4
  • DOI: 10.1016/S1750-5836(07)00086-2

Review of CO2 storage efficiency in deep saline aquifers
journal, September 2015


Simultaneous CO2 injection and water production to optimise aquifer storage capacity
journal, May 2011

  • Bergmo, Per Eirik S.; Grimstad, Alv-Arne; Lindeberg, Erik
  • International Journal of Greenhouse Gas Control, Vol. 5, Issue 3
  • DOI: 10.1016/j.ijggc.2010.09.002

National corridors for climate change mitigation: managing industrial CO 2 emissions in France : Modeling and Analysis: National corridors for climate change mitigation
journal, December 2013

  • Bielicki, Jeffrey M.; Calas, Guillaume; Middleton, Richard S.
  • Greenhouse Gases: Science and Technology, Vol. 4, Issue 3
  • DOI: 10.1002/ghg.1395

Causes and financial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources
journal, January 2014

  • Bielicki, Jeffrey M.; Pollak, Melisa F.; Fitts, Jeffrey P.
  • International Journal of Greenhouse Gas Control, Vol. 20
  • DOI: 10.1016/j.ijggc.2013.10.024

An examination of geologic carbon sequestration policies in the context of leakage potential
journal, June 2015

  • Bielicki, Jeffrey M.; Peters, Catherine A.; Fitts, Jeffrey P.
  • International Journal of Greenhouse Gas Control, Vol. 37
  • DOI: 10.1016/j.ijggc.2015.02.023

The Leakage Risk Monetization Model for Geologic CO 2 Storage
journal, April 2016

  • Bielicki, Jeffrey M.; Pollak, Melisa F.; Deng, Hang
  • Environmental Science & Technology, Vol. 50, Issue 10
  • DOI: 10.1021/acs.est.5b05329

Spatial clustering and carbon capture and storage deployment
journal, February 2009


Impact-driven pressure management via targeted brine extraction—Conceptual studies of CO2 storage in saline formations
journal, March 2012

  • Birkholzer, Jens T.; Cihan, Abdullah; Zhou, Quanlin
  • International Journal of Greenhouse Gas Control, Vol. 7
  • DOI: 10.1016/j.ijggc.2012.01.001

CO2 storage capacity estimation: Issues and development of standards
journal, April 2007

  • Bradshaw, John; Bachu, Stefan; Bonijoly, Didier
  • International Journal of Greenhouse Gas Control, Vol. 1, Issue 1
  • DOI: 10.1016/S1750-5836(07)00027-8

Carbon dioxide storage potential of shales
journal, July 2008

  • Busch, A.; Alles, S.; Gensterblum, Y.
  • International Journal of Greenhouse Gas Control, Vol. 2, Issue 3
  • DOI: 10.1016/j.ijggc.2008.03.003

Active CO2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity
journal, January 2012

  • Buscheck, Thomas A.; Sun, Yunwei; Chen, Mingjie
  • International Journal of Greenhouse Gas Control, Vol. 6
  • DOI: 10.1016/j.ijggc.2011.11.007

Pre-injection brine production in CO2 storage reservoirs: An approach to augment the development, operation, and performance of CCS while generating water
journal, November 2016

  • Buscheck, Thomas A.; Bielicki, Jeffrey M.; White, Joshua A.
  • International Journal of Greenhouse Gas Control, Vol. 54
  • DOI: 10.1016/j.ijggc.2016.04.018

Managing geologic CO 2 storage with pre-injection brine production: a strategy evaluated with a model of CO 2 injection at Snøhvit
journal, January 2016

  • Buscheck, Thomas A.; White, Joshua A.; Carroll, Susan A.
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03648H

A Tale of Two Technologies: Hydraulic Fracturing and Geologic Carbon Sequestration
journal, June 2011

  • Dammel, Joseph A.; Bielicki, Jeffrey M.; Pollak, Melisa F.
  • Environmental Science & Technology, Vol. 45, Issue 12
  • DOI: 10.1021/es201403c

A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells
journal, July 2015

  • Edwards, Ryan W. J.; Celia, Michael A.; Bandilla, Karl W.
  • Environmental Science & Technology, Vol. 49, Issue 15
  • DOI: 10.1021/acs.est.5b01982

Betting on negative emissions
journal, September 2014

  • Fuss, Sabine; Canadell, Josep G.; Peters, Glen P.
  • Nature Climate Change, Vol. 4, Issue 10
  • DOI: 10.1038/nclimate2392

Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in the Eastern United States
journal, October 2013

  • Godec, Michael; Koperna, George; Petrusak, Robin
  • International Journal of Coal Geology, Vol. 118
  • DOI: 10.1016/j.coal.2013.05.007

Adsorption of methane and carbon dioxide on gas shale and pure mineral samples
journal, December 2014


Carbon Dioxide Storage Capacity of Organic-Rich Shales
journal, December 2011

  • Kang, Seung Mo; Fathi, Ebrahim; Ambrose, Ray J.
  • SPE Journal, Vol. 16, Issue 04
  • DOI: 10.2118/134583-PA

Mesoscale Carbon Sequestration Site Screening and CCS Infrastructure Analysis
journal, January 2011

  • Keating, Gordon N.; Middleton, Richard S.; Stauffer, Philip H.
  • Environmental Science & Technology, Vol. 45, Issue 1
  • DOI: 10.1021/es101470m

Optimal Spatial Deployment of CO2 Capture and Storage Given a Price on Carbon
journal, February 2011

  • Kuby, Michael J.; Bielicki, Jeffrey M.; Middleton, Richard S.
  • International Regional Science Review, Vol. 34, Issue 3
  • DOI: 10.1177/0160017610397191

U.S. DOE NETL methodology for estimating the prospective CO2 storage resource of shales at the national and regional scale
journal, August 2016

  • Levine, Jonathan S.; Fukai, Isis; Soeder, Daniel J.
  • International Journal of Greenhouse Gas Control, Vol. 51
  • DOI: 10.1016/j.ijggc.2016.04.028

Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation
journal, September 2013


A scalable infrastructure model for carbon capture and storage: SimCCS
journal, March 2009


Effects of geologic reservoir uncertainty on CO2 transport and storage infrastructure
journal, May 2012

  • Middleton, Richard S.; Keating, Gordon N.; Viswanathan, Hari S.
  • International Journal of Greenhouse Gas Control, Vol. 8
  • DOI: 10.1016/j.ijggc.2012.02.005

Generating candidate networks for optimization: The CO2 capture and storage optimization problem
journal, January 2012


A dynamic model for optimally phasing in CO2 capture and storage infrastructure
journal, November 2012


Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2
journal, June 2015


The shale gas revolution: Barriers, sustainability, and emerging opportunities
journal, August 2017


Recent advances in risk assessment and risk management of geologic CO2 storage
journal, September 2015

  • Pawar, Rajesh J.; Bromhal, Grant S.; Carey, J. William
  • International Journal of Greenhouse Gas Control, Vol. 40
  • DOI: 10.1016/j.ijggc.2015.06.014

A System Model for Geologic Sequestration of Carbon Dioxide
journal, February 2009

  • Stauffer, Philip H.; Viswanathan, Hari S.; Pawar, Rajesh J.
  • Environmental Science & Technology, Vol. 43, Issue 3
  • DOI: 10.1021/es800403w

Greening Coal: Breakthroughs and Challenges in Carbon Capture and Storage
journal, October 2011

  • Stauffer, Philip H.; Keating, Gordon N.; Middleton, Richard S.
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es200510f

Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates
journal, September 2013

  • Tao, Zhiyuan; Clarens, Andres
  • Environmental Science & Technology, Vol. 47, Issue 19
  • DOI: 10.1021/es401221j

Physicochemical factors impacting CO2 sequestration in depleted shale formations: The case of the Utica shale
journal, January 2014


Techno-economic assessment of industrial CO2 storage in depleted shale gas reservoirs
journal, September 2015

  • Tayari, Farid; Blumsack, Seth; Dilmore, Robert
  • Journal of Unconventional Oil and Gas Resources, Vol. 11
  • DOI: 10.1016/j.juogr.2015.05.001

Development of a Hybrid Process and System Model for the Assessment of Wellbore Leakage at a Geologic CO 2 Sequestration Site
journal, October 2008

  • Viswanathan, Hari S.; Pawar, Rajesh J.; Stauffer, Philip H.
  • Environmental Science & Technology, Vol. 42, Issue 19
  • DOI: 10.1021/es800417x

Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project
journal, May 2014

  • White, J. A.; Chiaramonte, L.; Ezzedine, S.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 24
  • DOI: 10.1073/pnas.1316465111

Environmental Life Cycle Analysis of Water and CO 2 -Based Fracturing Fluids Used in Unconventional Gas Production
journal, November 2016

  • Wilkins, Rodney; Menefee, Anne H.; Clarens, Andres F.
  • Environmental Science & Technology, Vol. 50, Issue 23
  • DOI: 10.1021/acs.est.6b02913

Works referencing / citing this record:

Collapse of Reacted Fracture Surface Decreases Permeability and Frictional Strength
journal, December 2019

  • Spokas, K.; Fang, Y.; Fitts, J. P.
  • Journal of Geophysical Research: Solid Earth, Vol. 124, Issue 12
  • DOI: 10.1029/2019jb017805