DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery

Abstract

Tin (Sn) nanoparticle electrodes have been prepared and battery cycling performance has been investigated with 1.2 M LiPF6 in ethylene carbonate (EC) / diethyl carbonate (DEC) electrolyte (1:1, w/w) with and without added vinylene carbonate (VC) or fluoroethylene carbonate (FEC). Incorporation of either VC or FEC improves the capacity retention of Sn nanoparticle electrodes although incorporation of VC also results in a significant increase in cell impedance. The best electrochemical performance was observed with electrolyte containing 10% of added FEC. In order to develop a better understanding of the role of the electrolyte in capacity retention and solid electrolyte interface (SEI) structure, ex-situ surface analysis has been performed on cycled electrodes with infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Hard XPS (HAXPES). The ex-situ analysis reveals a correlation between electrochemical performance, electrolyte composition, and SEI structure.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1]
  1. Univ. of Rhode Island, Kingston, RI (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
Publication Date:
Research Org.:
Brown Univ., Providence, RI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1454690
Grant/Contract Number:  
sc0007074
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 162; Journal Issue: 13; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Seo, Daniel M., Nguyen, Cao Cuong, Young, Benjamin T., Heskett, David R., Woicik, Joseph C., and Lucht, Brett L. Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery. United States: N. p., 2015. Web. doi:10.1149/2.0121513jes.
Seo, Daniel M., Nguyen, Cao Cuong, Young, Benjamin T., Heskett, David R., Woicik, Joseph C., & Lucht, Brett L. Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery. United States. https://doi.org/10.1149/2.0121513jes
Seo, Daniel M., Nguyen, Cao Cuong, Young, Benjamin T., Heskett, David R., Woicik, Joseph C., and Lucht, Brett L. Wed . "Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery". United States. https://doi.org/10.1149/2.0121513jes. https://www.osti.gov/servlets/purl/1454690.
@article{osti_1454690,
title = {Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery},
author = {Seo, Daniel M. and Nguyen, Cao Cuong and Young, Benjamin T. and Heskett, David R. and Woicik, Joseph C. and Lucht, Brett L.},
abstractNote = {Tin (Sn) nanoparticle electrodes have been prepared and battery cycling performance has been investigated with 1.2 M LiPF6 in ethylene carbonate (EC) / diethyl carbonate (DEC) electrolyte (1:1, w/w) with and without added vinylene carbonate (VC) or fluoroethylene carbonate (FEC). Incorporation of either VC or FEC improves the capacity retention of Sn nanoparticle electrodes although incorporation of VC also results in a significant increase in cell impedance. The best electrochemical performance was observed with electrolyte containing 10% of added FEC. In order to develop a better understanding of the role of the electrolyte in capacity retention and solid electrolyte interface (SEI) structure, ex-situ surface analysis has been performed on cycled electrodes with infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Hard XPS (HAXPES). The ex-situ analysis reveals a correlation between electrochemical performance, electrolyte composition, and SEI structure.},
doi = {10.1149/2.0121513jes},
journal = {Journal of the Electrochemical Society},
number = 13,
volume = 162,
place = {United States},
year = {Wed Aug 26 00:00:00 EDT 2015},
month = {Wed Aug 26 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects
journal, February 2003


Electrochemical lithiation of tin and tin-based intermetallics and composites
journal, September 1999


A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy
journal, February 2010


What Are Batteries, Fuel Cells, and Supercapacitors?
journal, October 2004

  • Winter, Martin; Brodd, Ralph J.
  • Chemical Reviews, Vol. 104, Issue 10, p. 4245-4270
  • DOI: 10.1021/cr020730k

Lithium alloy negative electrodes
journal, September 1999


Thermodynamic Study of the Lithium-Tin System
journal, January 1981

  • Wen, C. John
  • Journal of The Electrochemical Society, Vol. 128, Issue 6
  • DOI: 10.1149/1.2127590

A review of the electrochemical performance of alloy anodes for lithium-ion batteries
journal, January 2011


The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes
journal, September 2001

  • Wachtler, Mario; Wagner, Markus R.; Schmied, Mario
  • Journal of Electroanalytical Chemistry, Vol. 510, Issue 1-2
  • DOI: 10.1016/S0022-0728(01)00532-0

Comparison of PVDF and PVDF-TFE-P as Binders for Electrode Materials Showing Large Volume Changes in Lithium-Ion Batteries
journal, January 2003

  • Chen, Zonghai; Christensen, L.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 150, Issue 8
  • DOI: 10.1149/1.1586922

Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode
journal, January 2011

  • Park, Sangjin; Heon Ryu, Ji; Oh, Seung M.
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3561424

Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization
journal, January 2009


Distinct Solid-Electrolyte-Interphases on Sn (100) and (001) Electrodes Studied by Soft X-Ray Spectroscopy
journal, February 2014

  • Qiao, Ruimin; Lucas, Ivan T.; Karim, Altaf
  • Advanced Materials Interfaces, Vol. 1, Issue 3
  • DOI: 10.1002/admi.201300115

Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries
journal, January 2014

  • Nguyen, Cao Cuong; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0731412jes

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Role of the LiPF 6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study
journal, January 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303399v

On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries
journal, February 2002


Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries
journal, March 2006

  • Xu, Kang; Zhuang, Guorong V.; Allen, Jan L.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 15
  • DOI: 10.1021/jp0601522

Reduction Reactions of Carbonate Solvents for Lithium Ion Batteries
journal, January 2014

  • Seo, D. M.; Chalasani, D.; Parimalam, B. S.
  • ECS Electrochemistry Letters, Vol. 3, Issue 9
  • DOI: 10.1149/2.0021409eel

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Inoue, Atsuyoshi
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785795

Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes
journal, January 2011

  • Nakai, Hideki; Kubota, Tadahiko; Kita, Akinori
  • Journal of The Electrochemical Society, Vol. 158, Issue 7
  • DOI: 10.1149/1.3589300

Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries
journal, December 2013

  • Leung, Kevin; Rempe, Susan B.; Foster, Michael E.
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.092401jes

Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS 2 Cathodes and Fluoroethyene Carbonate (FEC) as a Critically Important Component
journal, January 2012

  • Elazari, Ran; Salitra, Gregory; Gershinsky, Gregory
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.029209jes

Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate
journal, January 2013


Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries
journal, October 2012


Works referencing / citing this record:

Microsized Sn as Advanced Anodes in Glyme-Based Electrolyte for Na-Ion Batteries
journal, September 2016

  • Zhang, Biao; Rousse, Gwenaëlle; Foix, Dominique
  • Advanced Materials, Vol. 28, Issue 44
  • DOI: 10.1002/adma.201603212

Synthesis of Sn/Ag–Sn nanoparticles via room temperature galvanic reaction and diffusion
journal, January 2019

  • Saw, Min Jia; Nguyen, Mai Thanh; Zhu, Shilei
  • RSC Advances, Vol. 9, Issue 38
  • DOI: 10.1039/c9ra02987g

Investigation of the Lithium Solid Electrolyte Interphase in Vinylene Carbonate Electrolytes Using Cu||LiFePO 4 Cells
journal, January 2017

  • Brown, Zachary L.; Jurng, Sunhyung; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.0021712jes

Synergistic Performance of Lithium Difluoro(oxalato)borate and Fluoroethylene Carbonate in Carbonate Electrolytes for Lithium Metal Anodes
journal, December 2018

  • Brown, Zachary L.; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0181903jes

X-Ray-Induced Changes to Passivation Layers of Lithium-Ion Battery Electrodes
journal, November 2018

  • Young, Benjamin T.; Heskett, David R.; Woicik, Joseph C.
  • Journal of Spectroscopy, Vol. 2018
  • DOI: 10.1155/2018/1075902

High Performance Tin-coated Vertically Aligned Carbon Nanofiber Array Anode for Lithium-ion Batteries
journal, January 2018

  • Pandey, Gaind P.; Jones, Kobi; Brown, Emery
  • MRS Advances, Vol. 3, Issue 60
  • DOI: 10.1557/adv.2018.520